Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent peptides help nerves glow in surgery

07.02.2011
Accidental damage to thin or buried nerves during surgery can have severe consequences, from chronic pain to permanent paralysis.

Scientists at the University of California, San Diego School of Medicine may have found a remedy: injectable fluorescent peptides that cause hard-to-see peripheral nerves to glow, alerting surgeons to their location even before the nerves are encountered.

The findings are published in the Feb. 6 advance online edition of the journal Nature Biotechnology.

Nerve preservation is important in almost every kind of surgery, but it can be challenging, said Quyen T. Nguyen, MD, PhD, assistant professor of Head and Neck Surgery and the study's corresponding author. "For example, if the nerves are invaded by a tumor. Or, if surgery is required in the setting of trauma or infection, the affected nerves might not look as they normally would, or their location may be distorted."

Nguyen and colleagues at the Moores Cancer Center developed and injected a systemic, fluorescently labeled peptide (a protein fragment consisting of amino acids) into mice. The peptide preferentially binds to peripheral nerve tissue, creating a distinct contrast (up to tenfold) from adjacent non-nerve tissues. The effect occurs within two hours and lasts for six to eight hours, with no observable effect upon the activity of the fluorescent nerves or behavior of the animals.

"Of course, we have yet to test the peptide in patients, but we have shown that the fluorescent probe also labels nerves in human tissue samples," Nguyen said. Interestingly, fluorescence labeling occurs even in nerves that have been damaged or severed, provided they retain a blood supply. The discovery suggests fluorescence labeling might be a useful tool in future surgeries to repair injured nerves.

Currently, the ability to avoid accidental damage to nerves during surgery depends primarily upon the skill of the surgeon, and electromyographic monitoring. This technique employs stimulating electrodes to identify motor nerves, but not sensory nerves such as the neurovascular bundle around the prostate gland, damage of which can lead to urinary incontinence and erectile dysfunction following prostate surgery.

The new study complements earlier work in surgical molecular navigation by Nguyen and Roger Tsien, PhD, Howard Hughes Medical Institute investigator, UCSD professor of pharmacology, chemistry and biochemistry, a co-author of the paper and co-winner of the 2008 Nobel Prize in chemistry for his work on green fluorescent protein. In 2010, for example, the scientists and colleagues published papers describing the use of activated, fluorescent probes to tag cancer cells in mice. The ultimate goal of their work is to help surgeons identify and remove all malignant tissues by lighting up cancer cells, thus reducing the chance of recurrence and improving patient survival rates.

"The analogy I use is that when construction workers are excavating, they need a map showing where the existing underground electrical cables are actually buried, not just old plans of questionable accuracy," said Tsien. "Likewise when surgeons are taking out tumors, they need a live map showing where the nerves are actually located, not just a static diagram of where they usually lie in the average patient."

The researchers continue to refine their probes in animal models and prepare for eventual human clinical trials.

Co-authors of the paper include Michael A. Whitney and Beth Friedman, Department of Pharmacology, UCSD; Jessica L. Crisp, Department of Chemistry and Biochemistry, UCSD; Linda T. Nguyen, Division of Otolaryngology-Head and Neck Surgery, UCSD; Larry A. Gross and Paul Steinbach, Howard Hughes Medical Institute, UCSD.

These studies were supported by funding from the Howard Hughes Medical Institute, the Burrough-Wellcome Fund and grants from the National Institutes of Health (Awards #5K08EB008122 and #NS27177).

Quyen Nguyen, Michael Whitney and Roger Tsien are inventors of a technology that has been licensed by the University to Avelas Biosciences and has an equity interest in the company. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>