Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent peptides help nerves glow in surgery

07.02.2011
Accidental damage to thin or buried nerves during surgery can have severe consequences, from chronic pain to permanent paralysis.

Scientists at the University of California, San Diego School of Medicine may have found a remedy: injectable fluorescent peptides that cause hard-to-see peripheral nerves to glow, alerting surgeons to their location even before the nerves are encountered.

The findings are published in the Feb. 6 advance online edition of the journal Nature Biotechnology.

Nerve preservation is important in almost every kind of surgery, but it can be challenging, said Quyen T. Nguyen, MD, PhD, assistant professor of Head and Neck Surgery and the study's corresponding author. "For example, if the nerves are invaded by a tumor. Or, if surgery is required in the setting of trauma or infection, the affected nerves might not look as they normally would, or their location may be distorted."

Nguyen and colleagues at the Moores Cancer Center developed and injected a systemic, fluorescently labeled peptide (a protein fragment consisting of amino acids) into mice. The peptide preferentially binds to peripheral nerve tissue, creating a distinct contrast (up to tenfold) from adjacent non-nerve tissues. The effect occurs within two hours and lasts for six to eight hours, with no observable effect upon the activity of the fluorescent nerves or behavior of the animals.

"Of course, we have yet to test the peptide in patients, but we have shown that the fluorescent probe also labels nerves in human tissue samples," Nguyen said. Interestingly, fluorescence labeling occurs even in nerves that have been damaged or severed, provided they retain a blood supply. The discovery suggests fluorescence labeling might be a useful tool in future surgeries to repair injured nerves.

Currently, the ability to avoid accidental damage to nerves during surgery depends primarily upon the skill of the surgeon, and electromyographic monitoring. This technique employs stimulating electrodes to identify motor nerves, but not sensory nerves such as the neurovascular bundle around the prostate gland, damage of which can lead to urinary incontinence and erectile dysfunction following prostate surgery.

The new study complements earlier work in surgical molecular navigation by Nguyen and Roger Tsien, PhD, Howard Hughes Medical Institute investigator, UCSD professor of pharmacology, chemistry and biochemistry, a co-author of the paper and co-winner of the 2008 Nobel Prize in chemistry for his work on green fluorescent protein. In 2010, for example, the scientists and colleagues published papers describing the use of activated, fluorescent probes to tag cancer cells in mice. The ultimate goal of their work is to help surgeons identify and remove all malignant tissues by lighting up cancer cells, thus reducing the chance of recurrence and improving patient survival rates.

"The analogy I use is that when construction workers are excavating, they need a map showing where the existing underground electrical cables are actually buried, not just old plans of questionable accuracy," said Tsien. "Likewise when surgeons are taking out tumors, they need a live map showing where the nerves are actually located, not just a static diagram of where they usually lie in the average patient."

The researchers continue to refine their probes in animal models and prepare for eventual human clinical trials.

Co-authors of the paper include Michael A. Whitney and Beth Friedman, Department of Pharmacology, UCSD; Jessica L. Crisp, Department of Chemistry and Biochemistry, UCSD; Linda T. Nguyen, Division of Otolaryngology-Head and Neck Surgery, UCSD; Larry A. Gross and Paul Steinbach, Howard Hughes Medical Institute, UCSD.

These studies were supported by funding from the Howard Hughes Medical Institute, the Burrough-Wellcome Fund and grants from the National Institutes of Health (Awards #5K08EB008122 and #NS27177).

Quyen Nguyen, Michael Whitney and Roger Tsien are inventors of a technology that has been licensed by the University to Avelas Biosciences and has an equity interest in the company. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

nachricht When fish swim in the holodeck
22.08.2017 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>