Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu vaccination protects bacteria against virus

15.08.2008
Bacteria – like people animals and plants – can become infected by a virus. Researchers at Wageningen University, together with colleagues from England and the United States, have unravelled a mechanism with which bacteria can defend themselves for a longer period against threatening viruses.

Over the long term, this research offers possibilities to protect bacteria used in industrial processes against viral infections by giving them a 'flu vaccination'. The researchers will publish their findings in the journal Science on 15 August.

The mechanism that bacteria use to protect themselves against viruses was discovered last year. In an ingenious fashion, the bacteria build pieces of viral DNA into their own DNA. The 'adopted' segment of DNA works like a snapshot in a photo album, a type of memory that reminds the bacteria during a subsequent encounter with the same virus. At that point, the viral DNA is recognised, after which the bacteria set a system into operation that ultimately leads to the breakdown of the virus. Until recently, the operation of this system was a mystery.

The team of researchers from Wageningen, Sheffield (UK) and Bethesda (USA) succeeded in unravelling the operation of this defence system. In recent years, researchers Stan Brouns, Matthijs Jore, Magnus Lundgren and John van der Oost (Laboratory of Microbiology of Wageningen University) identified six bacterial proteins involved in the defence system. These proteins help the bacteria use the built-in virus fragment to prevent a virus infection. The researchers determined that one of the proteins cuts the 'virus snapshot' out of the photo album, and together with the other five proteins, compares the snapshot with the DNA of the invading virus. In the same way, other viruses in the photo album can also be rendered harmless.

With this knowledge, it is theoretically possible to protect bacteria against problematic viruses. This can be compared to a flu vaccination for bacteria. Potential applications include industrial fermentation processes, where bacteria that produce a useful substance are protected against viral infection by means of a 'vaccination' . By reversing the process, the protective mechanism of bacteria can also be deactivated. This could lead to a strategy where viruses can be used to combat bacteria that have developed an advanced form of antibiotic resistance, such as the hospital bacteria.

All animals, plants and bacteria run the risk of being infected by specific viruses. For humans, such viruses include the flu virus, for the tobacco plant this is the tobacco mosaic virus and for the intestinal bacterium E. coli this is the enterobacteria phage lambda. During the course of evolution, these organisms have developed systems to render viruses harmless. Viruses respond by adapting themselves in such a way that they avoid the defence mechanism, to which the bacteria respond in turn. In short, there is a continuous arms race between bacteria and viruses.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>