Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going with the flow

12.09.2012
Scientists who study tissue engineering and test new drugs often need to sort, rotate, move, and otherwise manipulate individual cells.

They can do this by prodding the cells into place with a mechanical probe or coaxing them in the desired direction with acoustic waves, electric fields, or flowing fluids.

Techniques that rely on direct physical contact can position individual cells with a high level of precision while non-contact techniques are often faster for sorting large numbers of cells. An international team of researchers has now developed a way to manipulate cells that combines some of the benefits of both contact and non-contact methods.

The researchers suspended a tiny plate in a microfluidic channel and used magnetic controls to move the plate up and down and back and forth. The movements generated fluid flow patterns that varied depending on characteristics of the oscillations such as frequency, magnitude, and phase, and the relative position of the plate and the channel wall.

Changing these parameters allowed the researchers to create different streamlines that either pulled or pushed a cell toward or away from the plate, as well as vortices that rotated the cell. When the cell reached the plate the researchers could also use the plate for precise, direct-contact manipulations.

The researchers demonstrated the technique, which they describe in a paper published in the American Institute of Physics' journal Applied Physics Letters, by manipulating a single bovine egg cell. As a next step, the team plans to demonstrate control of multiple cells simultaneously.

Article: "Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations" is published in Applied Physics Letters.

Link: http://apl.aip.org/resource/1/applab/v101/i7/p074102_s1

Authors: Masaya Hagiwara (1), Tomohiro Kawahara (2, 3), and Fumihito Arai (4)

(1) Aerospace and Mechanical Engineering Department, University of California, Los Angeles
(2) Kyushu Institute of Technology, Japan
(3) Massachusetts Institute of Technology, Cambridge, Mass.
(4) Department of Micro-Nano Systems Engineering, Nagoya University, Japan

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>