Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Florida State researcher uncovers protein's role in cell division

16.06.2010
A Florida State University researcher has identified the important role that a key protein plays in cell division, and that discovery could lead to a greater understanding of stem cells.

Timothy L. Megraw, an associate professor in the College of Medicine, has outlined his findings in the cover story of the June 15 issue of Developmental Cell. The article, "CDK5RAP2 Regulates Centriole Engagement and Cohesion in Mice," was co-authored by researchers from the University of Texas Southwestern Medical Center at Dallas and the University of North Texas.

In August, Megraw received a four-year, $1.2 million grant from the National Institutes of Health to explore the role of centrosomes and cilia in cell division and their connections to human disease.

One long-term goal of Megraw's research has been to discover which parts of the cell play which roles in cell division. The centrosome is an important player. When a cell is ready to divide, it typically has two centrosomes, each containing a "mother and daughter" pair of centrioles tightly connected to each other, or "engaged."

"Two is important," Megraw said, "because you divide your genetic material into two equal sets. Each of these centriole pairs organizes the cytoskeletal machinery that pulls the chromosomes apart. So you don't want there to be more than two, because then you run the risk of unequal separation of the chromosomes."

The centrioles are supposed to replicate only once during the cell cycle. What keeps them from replicating more often was discovered a few years ago, Megraw said, when researchers identified mother-daughter engagement as the key. Once those two become disengaged, it acts as the "licensing" step, in effect giving the centrioles permission to replicate.

Unknown until now, Megraw said, was what regulated those centrioles to remain engaged until the proper time, to prevent excess replication. He suspected that the protein CDK5RAP2 was at least partly responsible. His team tested the protein's role using a mutant mouse in which the protein was "knocked out" and not functioning. These researchers looked for any effects on engagement and "cohesion," in which centriole pairs are tethered by fibers.

They noted in the mutant mouse that engagement and cohesion did not occur in their typical orderly fashion and that centrioles were more numerous and often single rather than paired. The amplified centrioles assembled multipolar spindles, a potential hazard for chromosomal stability. The researchers concluded that CDK5RAP2 is required to maintain centriole engagement and cohesion, thereby restricting centriole replication.

They are looking at how this discovery might apply to the human brain.

"The two mouse mutants we made mimic the two known mutations in humans in CDK5RAP2 — which has another name, MCPH3, in humans," Megraw said. "The disease associated with that is a small brain.

"Our next step is to look at the brains of the mice and try to determine what's wrong. We think it's the stem cells — that the progenitors that give rise to all the neurons in the brain are dying early or changing from a progenitor into a neuron too early."

Another gene called myomegalin might be functionally redundant to CDK5RAP2, Megraw said, adding, "Our goal is to knock that out, too."

The research his lab has done might also be applicable to cancer drugs for humans, he said. Centrosomes organize microtubules, which are structures in the cell that many important anti-cancer drugs target.

"The amplified centrioles and multipolar spindles suggest that the mutant mice may be more susceptible to developing cancers," Megraw said. "We are in a position to test this with our new mouse models."

College of Medicine student Zach Folzenlogen created the cover design for this issue of Developmental Cell.

Learn more about Megraw's research at http://www.med.fsu.edu/biomed/lab/megraw/.

Timothy Megraw | EurekAlert!
Further information:
http://www.fsu.edu

Further reports about: CDK5RAP2 anti-cancer drug cancer drug cell death cell division mouse model

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>