Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Florida State researcher uncovers protein's role in cell division

16.06.2010
A Florida State University researcher has identified the important role that a key protein plays in cell division, and that discovery could lead to a greater understanding of stem cells.

Timothy L. Megraw, an associate professor in the College of Medicine, has outlined his findings in the cover story of the June 15 issue of Developmental Cell. The article, "CDK5RAP2 Regulates Centriole Engagement and Cohesion in Mice," was co-authored by researchers from the University of Texas Southwestern Medical Center at Dallas and the University of North Texas.

In August, Megraw received a four-year, $1.2 million grant from the National Institutes of Health to explore the role of centrosomes and cilia in cell division and their connections to human disease.

One long-term goal of Megraw's research has been to discover which parts of the cell play which roles in cell division. The centrosome is an important player. When a cell is ready to divide, it typically has two centrosomes, each containing a "mother and daughter" pair of centrioles tightly connected to each other, or "engaged."

"Two is important," Megraw said, "because you divide your genetic material into two equal sets. Each of these centriole pairs organizes the cytoskeletal machinery that pulls the chromosomes apart. So you don't want there to be more than two, because then you run the risk of unequal separation of the chromosomes."

The centrioles are supposed to replicate only once during the cell cycle. What keeps them from replicating more often was discovered a few years ago, Megraw said, when researchers identified mother-daughter engagement as the key. Once those two become disengaged, it acts as the "licensing" step, in effect giving the centrioles permission to replicate.

Unknown until now, Megraw said, was what regulated those centrioles to remain engaged until the proper time, to prevent excess replication. He suspected that the protein CDK5RAP2 was at least partly responsible. His team tested the protein's role using a mutant mouse in which the protein was "knocked out" and not functioning. These researchers looked for any effects on engagement and "cohesion," in which centriole pairs are tethered by fibers.

They noted in the mutant mouse that engagement and cohesion did not occur in their typical orderly fashion and that centrioles were more numerous and often single rather than paired. The amplified centrioles assembled multipolar spindles, a potential hazard for chromosomal stability. The researchers concluded that CDK5RAP2 is required to maintain centriole engagement and cohesion, thereby restricting centriole replication.

They are looking at how this discovery might apply to the human brain.

"The two mouse mutants we made mimic the two known mutations in humans in CDK5RAP2 — which has another name, MCPH3, in humans," Megraw said. "The disease associated with that is a small brain.

"Our next step is to look at the brains of the mice and try to determine what's wrong. We think it's the stem cells — that the progenitors that give rise to all the neurons in the brain are dying early or changing from a progenitor into a neuron too early."

Another gene called myomegalin might be functionally redundant to CDK5RAP2, Megraw said, adding, "Our goal is to knock that out, too."

The research his lab has done might also be applicable to cancer drugs for humans, he said. Centrosomes organize microtubules, which are structures in the cell that many important anti-cancer drugs target.

"The amplified centrioles and multipolar spindles suggest that the mutant mice may be more susceptible to developing cancers," Megraw said. "We are in a position to test this with our new mouse models."

College of Medicine student Zach Folzenlogen created the cover design for this issue of Developmental Cell.

Learn more about Megraw's research at http://www.med.fsu.edu/biomed/lab/megraw/.

Timothy Megraw | EurekAlert!
Further information:
http://www.fsu.edu

Further reports about: CDK5RAP2 anti-cancer drug cancer drug cell death cell division mouse model

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>