Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fleshing out the life histories of dead whales

08.12.2010
Dead whales that sink down to the seafloor provide a feast for deep-sea animals that can last for years.

Previous research suggested that such "whale falls" were homes for unique animals that lived nowhere else. However, after sinking five whale carcasses in Monterey Canyon, researchers from the Monterey Bay Aquarium Research Institute (MBARI) found that most of the animals at these sites were not unique to whale falls, but were common in other deep-sea environments as well.

Nonetheless, the whale-fall communities did include a few very abundant animals that were "bone specialists," including 15 species of bone-eating Osedax worms and several newly discovered species of bone-eating snails.

In 2004, evolutionary biologist Robert Vrijenhoek and his colleagues announced the discovery of a new family of bone-eating worms, which they found two years earlier living on a dead whale in Monterey Canyon, almost 3,000 meters below the sea surface. Following this discovery, Vrijenhoek's team set out to study how these worms survived, reproduced, and spread from one whale carcass to another.

To this end, MBARI researchers and marine operations staff hauled five very smelly dead whales off the beaches of Monterey Bay, attached weights to the carcasses, and sank them at different depths in Monterey Canyon.

Over the next six years, MBARI researchers and collaborators revisited these whale falls every few months. This long-term, concerted effort involved dozens of dives using MBARI's remotely operated vehicles (ROVs).

After each dive, MBARI's video-lab staff identified all of the animals visible in video recordings taken by the ROV, and entered the results into MBARI's Video Annotation and Reference System (VARS) database.

One result of this effort was the discovery of 14 additional species of Osedax worms, as well as new species of anemones, snails, worms, crabs, and other deep-sea animals. At first, this work appeared to support the conclusions of previous researchers-that many of the animals at whale falls were unique.

In 2010, however, MBARI marine biologists re-analyzed the hundreds of hours of video footage from Vrijenhoek's ROV dives. Using the VARS database, the researchers counted all of the different types of animals observed at the Monterey Bay whale falls over the last six years. They discovered that, rather than being whale-fall specialists, most of the animals were "background species," which were common elsewhere in Monterey Bay.

The results of this new research are described in a recent paper published in Deep-Sea Research. The paper was written by MBARI biologist Lonny Lundsten in collaboration with Vrijenhoek and six other researchers.

The research team also studied how the animals at each whale fall changed over time. Like previous researchers, they found that, during the first few months after the carcass reached the seafloor, a few species of scavenging animals, including sharks, hagfish, rattails, and crabs, removed flesh from the whale bones.

As the flesh disappeared, a more diverse collection of animals appeared, including some that fed on whale bones or on seafloor bacteria, as well as predators that hunted animals attracted to the carcass. Overall, however, the Monterey whale-fall communities did not seem to progress through a well-defined or consistent series of stages, as had been observed at other sites.

In fact, each of the whale falls followed a different sequence of community development, involving different key species. There were, however, similarities between the animal communities observed at similar depths. For example, the whale falls in shallower water were sometimes surrounded dense swarms of tiny, shrimp-like amphipods. In the same way, whales at similar depths were colonized by similar species of Osedax worms.

The presence of over a dozen species of Osedax worms reflects the fact that of these worms largely control the fate of whale falls in Monterey Canyon. Because these worms devour the primary source of nutrition at a whale fall-the whale bones-they dictate how long a whale-fall community will survive. Thus Lundsten's paper shows that Osedax worms are not just another weird deep-sea animal, but a "foundation species."

But it turns out that Osedax worms are not the only animals that eat whale bones. In a recent paper in Biological Bulletin, MBARI researcher Shannon Johnson describes two new species of bone-eating snails. One of the new snails, Rubyspira osteovora, is the second most abundant animal (after Osedax worms) at the deepest Monterey whale fall.

Johnson and her colleagues are still trying to determine if these snails can digest whale bones directly or require the help of "symbiotic" bacteria. If Rubyspira snails do not require symbiotic bacteria to digest bone, they would be the only known marine animals capable of surviving on a diet of bone alone. They also appear to be "living fossils," representing a lineage that survived from the time of the dinosaurs (the Cretaceous era).

With all of these worms and snails feeding on them, whale carcasses in Monterey Canyon do not seem to last as long as those observed elsewhere. Lundsten's paper suggests that the whale carcasses in Monterey Canyon will completely decompose in less than 10 years.

In contrast, whale carcasses studied off Southern California may survive for 50 to 100 years. Lundsten and his coauthors suggest that the Southern California whale carcasses last longer because: 1) They lie in deep basins where the seawater contains very little oxygen (and thus fewer Osedax worms); and 2) They are mostly adult whales, which have thicker, more heavily calcified bones, whereas the whales in Monterey Bay were mostly juveniles.

Even though the whale carcasses that were "planted" in Monterey Canyon are rapidly disappearing, they continue to support interesting communities of animals and microorganisms. Vrijenhoek and his fellow researchers are in the process of describing several new species of snails, limpets, worms, and amphipods, all from the whale falls in Monterey Bay. As Lundsten concludes in his paper, "As these sites progress into their final stages of degradation, they will continue to reveal new insights into life and death in the deep seafloor."

Kim Fulton-Bennett | MBARI News Release
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2010/whalefalls/whalefalls-release.html
http://www.mbari.org/news/news_releases/2010/whalefalls/whalefalls-images.html

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>