How flesh-eating bacteria attack the body's immune system

The finding, which could aid in development of new treatments for serious infections in human patients, will be reported in the August 14 issue of the journal Cell Host & Microbe.

Led by senior author Victor Nizet, M.D., UC San Diego professor of pediatrics and pharmacy and an infectious diseases physician at Rady Children's Hospital, San Diego, the researchers showed that a protease known as SpyCEP (Strep. pyogenes cell envelope protease) – produced in large amounts by the most dangerous strains of Strep –inactivates an immune system molecule that controls the body's white blood cells ability to fight bacteria. Without signals from this molecule, white blood cells become slower and weaker, and infections can spread out of control.

“These findings may suggest a new approach to treating serious Strep infections by supporting our body's natural defense system,” said Nizet.

The research focuses on the major human pathogen group A Streptococcus. Among the most important of all bacterial pathogens, Strep is responsible for a wide range of diseases – from simple strep throat to life-threatening conditions such as necrotizing fasciitis (“flesh-eating disease”) and toxic shock syndrome.

The UC San Diego investigators examined the interaction of Strep bacteria with neutrophils, specialized white blood cells that play a front-line role in humans' immune defense against pathogenic microbes. Previous research had shown that Strep bacteria change their pattern of gene expression dramatically during the course of infection, including a massive increase in production of SpyCEP, which has the unique ability to inactivate an immune defense molecule known as interleukin-8 (IL-8). IL-8 is produced at sites of infection and serves as a signal for neutrophils to migrate out of the bloodstream and into the tissues to clear the infection.

The UC San Diego team used a molecular genetic approach for their studies, knocking out the gene encoding the SpyCEP from a pathogenic strep strain that was originally isolated from a patient suffering from necrotizing fasciitis.

“Lacking this single protease, the mutant Strep strain was easily killed by human neutrophils,” said lead author Annelies Zinkernagel, M.D., a postgraduate researcher in the UCSD department of pediatrics. “In addition, the mutant Strep bacteria no longer produced a spreading infection when injected into the skin of experimental mice.”

The critical role of the Strep protease was confirmed by cloning the corresponding gene into a normally non-pathogenic bacterial strain, which then became resistant to neutrophil killing. More detailed analysis demonstrated that by inactivating IL-8, SpyCEP blocked neutrophil migration across blood vessels as well as neutrophil production of “extracellular traps” used to ensnare bacteria.

The immune-blocking effects of SpyCEP produced by Strep were strong enough to allow other bacterial species to survive at the site of infection, which may contribute to mixed infections that require complex antibiotic regimens. The researchers also showed that a pathogen of fish, Streptococcus iniae, produces its own version of SpyCEP that may contribute to recent reports of severe skin infections caused by this bacterium in fish handlers.

Nizet explained that the researchers' findings could lead to novel treatments for Strep-related diseases. “In addition to attempting to kill the bacteria directly with standard antibiotics, new treatment strategies could be targeted to inhibit the Strep protease and thereby disarm the pathogen, making it susceptible to clearance by our normal immune defenses,” he said.

Media Contact

Debra Kain EurekAlert!

More Information:

http://www.ucsd.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors