Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flat bacteria in nanoslits

19.08.2009
It appears that bacteria can squeeze through practically anything. In extremely small nanoslits they take on a completely new flat shape. Even in this squashed form they continue to grow and divide at normal speeds.

This has been demonstrated by research carried out at TU Delft's Kavli Institute of Nanoscience. The results will be appearing this week in the online edition of the prestigious scientific journal Proceedings of the National Academy of Sciences (PNAS) and as the cover article in the September 1 print issue of PNAS.

Using nanofabrication, Delft scientists made minuscule channels, measuring a micrometer or less in width and 50 micrometer in length, on a silicon chip between tiny chambers containing bacteria. Subsequently they studied the behaviour of Escherichia. coli and Bacillus. subtilis bacteria in this artificial environment. The bacteria were genetically modified so that they were fluorescent and could easily be followed using a special microscope.

Squashed flat

Under normal circumstances these bacteria swim and this research showed that they retain this motility in surprisingly narrow channels. They swam just as actively as usual even in channels that were only 30 percent wider than their own diameter (of about 1 micrometer). In even narrower submicron channels the bacteria stopped swimming, and an unexpected effect took place: The bacteria were able to make their way through ultra-narrow passageways in another manner, that is by growing and dividing. The researchers found that this way, E. coli bacteria could squeeze through narrow slits that were only half their own diameter in width. Post-doctoral researcher, Jaan Männik: "This took us totally by surprise. The bacteria become completely flattened. They have all sorts of peculiar shapes both in the channels and when they finally come out at the other side. What is really remarkable, however, is that in the channels, and therefore under extreme confinement, they continue to grow and divide at normal speeds. Apparently their shape is not a determining factor for these activities."

Subterranean bacteria, membrane filters and pacemakers

The flat bacteria form a new phenotype,. According to the researchers, this form may be more common than one might think. The bulk of the biomass on Earth is to be found under the ground. Here, bacteria often live in spaces that measure around a micrometer. The study suggests that many more bacteria may be present in small spaces than was always thought. This may have direct consequences, for example for membrane filters (with tiny pores) for water treatment and for medical applications, such as pacemakers or other implants, where bacteria must be excluded as much as possible. The results of the study also provide more fundamental understanding of the behaviour of bacteria that are 'locked up' in nanosized environments.

Multidisciplinary

Little is known about the effect of this sort of confinement on the behaviour of bacteria as yet. According to Prof. Cees Dekker, this has to do with the required combination of very different disciplines: "Microbiologists do not generally engage in nanofabrication, which enables us to examine this area under controlled conditions, and nanoscientists usually know little about the behaviour of bacteria. My colleague, Juan Keymer, an evolutionary biologist, and I are now trying to combine these disciplines in our new Department of Bionanoscience. And this is leading to all sorts of new discoveries."

The research results will be appearing in the week beginning 17 August in the online edition of the scientific journal, Proceedings of the National Academy of Sciences (USA). The article will also be featured as the cover article in the print version of PNAS to be published on 1 September 2009.

Prof. Cees Dekker | EurekAlert!
Further information:
http://www.tudelft.nl

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>