Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FIZ Karlsruhe announces that the complete ReaxysFile™ is now available on STN®

21.11.2012
Full depth of Reaxys’ experimentally validated chemical substance data, reactions and associated properties is now available to information professionals via STN, the search tool for precision searching and comprehensive, high-quality coverage of science and intellectual property information.

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure has launched a significantly updated version of ReaxysFileTM on STN InternationalSM, the renowned online service for research and patent information. ReaxysFile now contains the full content from Reaxys®, a leading source for chemical substance and reaction data produced by Elsevier.

Information on several million substances has been added, including inorganic substances and substances derived from patents, bringing the database to the same content level as in Reaxys. This will immediately increase information professionals’ and patent experts’ efficiency when investigating new research opportunities, performing freedom-to-operate searches or looking for reliable chemical substance information. ReaxysFile can also be used to retrieve relevant information for meeting regulatory requirements on chemicals, e.g. REACH.

ReaxysFile is a major factual database containing fully searchable chemical structures and reactions, associated with a depth of chemical and physical properties – all experimentally measured. With historical data dating back to 1771 and the most relevant current publications (journals and patents) in organic, inorganic and organometallic chemistry, ReaxysFile forms a valuable part of STN for information professionals and patent experts looking either for pin-point accuracy concerning a particular substance, or whilst searching for broader research questions.

“We are pleased to see the collaboration with Elsevier further extended by this successful update to the ReaxysFile,” says Rainer Stuike-Prill, Vice President Marketing & Sales at FIZ Karlsruhe. “Reaxys is widely acknowledged as a valuable source for a detailed view of chemistry data. With the addition of the full version of ReaxysFile to STN users benefit from more comprehensive and precise search results.”

Reaxys® and the Reaxys® trademark are owned and protected by Reed Elsevier Properties SA.

All rights reserved.

About STN InternationalSM
STN International (www.stn-international.de), the premium online service in science and patent information, provides access to nearly 150 databases from renowned producers and is the premier single source for the world's disclosed scientific and technical research. Only STN offers DWPISM, CAplusSM/CAS REGISTRYSM and INPADOCDB/INPAFAMDB on a single platform. STN’s powerful, transparent retrieval system allows for text, factual, chemical structure and biosequence searches. The numeric search feature for physical and chemical properties is unique in the world. Also available are excellent analysis, visualization and post-processing tools. With precise and comprehensive information, STN supports information professionals in answering business-critical questions by offering them complete and topical information that meets the highest quality standards. Top priority is given to data privacy protection, data security, and confidentiality. STN is operated jointly by CAS and FIZ Karlsruhe worldwide and is represented in Japan by JAICI.
Additional Information:
FIZ Karlsruhe
STN Europe
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen, Germany
Phone: +49 (0) 7247 808-555
Fax: +49 (0) 7247 808-259
E-mail: helpdesk@fiz-karlsruhe.de
Contact Marketing Communications:
FIZ Karlsruhe
Rüdiger Mack
Phone: +49 (0) 7247 808-513
E-mail: ruediger.mack@fiz-karlsruhe.de
FIZ Karlsruhe – Leibniz Institute for Information Infrastructure (www.fiz-karlsruhe.de) is a not-for-profit limited liability company and one of the largest non-academic information infrastructure institutions in Germany. As such, its public mission is to develop and provide products and services for an information infrastructure to science, research, and industry. FIZ Karlsruhe strives to strengthen the transfer of knowledge in Germany and abroad and to support the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative e-Science solutions to support the process of research in all its stages (e.g., research data management), and throughout all scientific disciplines

• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology

FIZ Karlsruhe is a member of the Leibniz Association which consists of more than 80 institutions conducting knowledge-driven and applied basic research, maintaining scientific infrastructure and providing research-based services.

Rüdiger Mack | idw
Further information:
http://www.fiz-karlsruhe.de/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>