Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fitness tests for frogs?

30.03.2011
Treadmill tests for poison frogs prove toxic species are more physically fit

The most toxic, brightly colored members of the poison frog family may also be the best athletes, says a new study.

So-named because some tribes use their skin secretions to poison their darts, the poison dart frogs of the Amazon jungle are well known for their bitter taste and beautiful colors. The spectacular hues of these forest frogs serve to broadcast their built-in chemical weapons: skin secretions containing nasty toxins called alkaloids. Like the red, yellow and black bands on a coral snake or the yellow stripes on a wasp, their contrasting color patterns warn would-be predators to stay away, said lead author Juan Santos of the National Evolutionary Synthesis Center in Durham, NC.

As it turns out, the most boldly-colored and bad-tasting species are also the most physically fit, the authors report this week in the journal Proceedings of the National Academy of Sciences.

In forests in Colombia, Ecuador, Venezuela, and Panamá, Santos subjected nearly 500 poison frogs — representing more than 50 species — to a frog fitness test. He measured their oxygen uptake during exercise using a rotating plastic tube, turning the tube like a hamster wheel to make the frogs walk.

Santos estimated the frogs' metabolic rates while at rest, and again after four minutes of exercise. The result? The most dazzling and deadly species had higher aerobic capacity than their drab, nontoxic cousins.

"They're better able to extract oxygen from each breath and transport it to their muscles, just like well-trained athletes," Santos said.

Poisonous species owe their athletic prowess to their unusual foraging habits, explained co-author David Cannatella of the University of Texas at Austin. Unlike snakes and other poisonous animals which make their own venom, poison frogs get their toxins from their food.

"They acquire their alkaloid chemicals by eating ants and mites," Cannatella said.

Because of their picky diet, poisonous frogs have to forage far and wide for food. "Nontoxic species basically stay in one place and don't move very much and eat any insect that comes close to them," Santos said. "But the bright, poisonous frogs are very picky about what they eat."

"It's not like a buffet where they can get everything they need to eat in one place," Cannatella added. "Ants and mites are patchy, so the frogs have to move around more to find enough food."

This combination of toxic skin and bold colors — a syndrome known as aposematism —evolved in tandem with specialized diet and physical fitness multiple times across the poison frog family tree, the authors explained. In some cases the frogs' physical fitness may have evolved before their unusual diet, making it possible to forage for harder-to-find food. But the specific sequence of events was likely different for different branches of the tree, Santos said.

The findings appear in the March 28 issue of Proceedings of the National Academy of Sciences.

CITATION: Santos, J. and D. Cannatella (2011). "Phenotypic integration emerges from aposematism and scale in poison frogs." Proceedings of the National Academy of Sciences. www.pnas.org/cgi/doi/10.1073/pnas.1010952108.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>