Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fitness tests for frogs?

30.03.2011
Treadmill tests for poison frogs prove toxic species are more physically fit

The most toxic, brightly colored members of the poison frog family may also be the best athletes, says a new study.

So-named because some tribes use their skin secretions to poison their darts, the poison dart frogs of the Amazon jungle are well known for their bitter taste and beautiful colors. The spectacular hues of these forest frogs serve to broadcast their built-in chemical weapons: skin secretions containing nasty toxins called alkaloids. Like the red, yellow and black bands on a coral snake or the yellow stripes on a wasp, their contrasting color patterns warn would-be predators to stay away, said lead author Juan Santos of the National Evolutionary Synthesis Center in Durham, NC.

As it turns out, the most boldly-colored and bad-tasting species are also the most physically fit, the authors report this week in the journal Proceedings of the National Academy of Sciences.

In forests in Colombia, Ecuador, Venezuela, and Panamá, Santos subjected nearly 500 poison frogs — representing more than 50 species — to a frog fitness test. He measured their oxygen uptake during exercise using a rotating plastic tube, turning the tube like a hamster wheel to make the frogs walk.

Santos estimated the frogs' metabolic rates while at rest, and again after four minutes of exercise. The result? The most dazzling and deadly species had higher aerobic capacity than their drab, nontoxic cousins.

"They're better able to extract oxygen from each breath and transport it to their muscles, just like well-trained athletes," Santos said.

Poisonous species owe their athletic prowess to their unusual foraging habits, explained co-author David Cannatella of the University of Texas at Austin. Unlike snakes and other poisonous animals which make their own venom, poison frogs get their toxins from their food.

"They acquire their alkaloid chemicals by eating ants and mites," Cannatella said.

Because of their picky diet, poisonous frogs have to forage far and wide for food. "Nontoxic species basically stay in one place and don't move very much and eat any insect that comes close to them," Santos said. "But the bright, poisonous frogs are very picky about what they eat."

"It's not like a buffet where they can get everything they need to eat in one place," Cannatella added. "Ants and mites are patchy, so the frogs have to move around more to find enough food."

This combination of toxic skin and bold colors — a syndrome known as aposematism —evolved in tandem with specialized diet and physical fitness multiple times across the poison frog family tree, the authors explained. In some cases the frogs' physical fitness may have evolved before their unusual diet, making it possible to forage for harder-to-find food. But the specific sequence of events was likely different for different branches of the tree, Santos said.

The findings appear in the March 28 issue of Proceedings of the National Academy of Sciences.

CITATION: Santos, J. and D. Cannatella (2011). "Phenotypic integration emerges from aposematism and scale in poison frogs." Proceedings of the National Academy of Sciences. www.pnas.org/cgi/doi/10.1073/pnas.1010952108.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>