Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gone fishing: Researchers' imaging technique trolls in quiet cellular seas

Experienced anglers know that choppy waters make for difficult fishing, so they try not to rock the boat. Thanks to a new microscopy technique, cell biology researchers can heed that same advice.

University of Illinois researchers developed a method they call “trolling AFM,” which allows them to study soft biological samples in liquid with high resolution and high quality. Led by mechanical science and engineering professor Min-Feng Yu, the group published its findings in the journal Nanotechnology.

“We developed a highly sensitive method for high-resolution imaging of soft biological samples, such as living cells, in their physiological condition,” said Majid Minary, a recent graduate of Yu’s group and first author of the paper. Minary now is a professor at the University of Texas-Dallas. “We improved the quality factor of common atomic force microscopy imaging methods by two orders of magnitude,” Minary said.

The widely used atomic force microscope provides images of tiny structures with high resolution at the atomic scale. The AFM has a sharp probe at the end of an arm, called a cantilever. The tip of the probe skims the surface of a sample to measure mechanical, electrical or chemical properties.

When scientists want to study cells, tissue or other live biological materials, the samples must be submerged in a liquid to keep them alive. This poses difficulties for atomic force microscopy, because the cantilever has to be submerged as well.

Cells and tissues are so soft that if the AFM probe were simply dragged across the surface, it would damage or displace the sample instead of reading it. Therefore, scientists have to operate the AFM in oscillation mode – with the probe gently tapping along the sample and detecting resistance.

But oscillation in liquid brings a tide of complications in its wake.
Oscillating a relatively large structure, such as an AFM cantilever, through liquid also causes the liquid to surge up and down with the oscillation, like waves in a tidal pool, causing even more drag.

“There’s a huge amount of hydrodynamic drag associated with operating a such a big cantilever, compared to the resolution you’re trying to approach,” said Yu, “so it causes lots of disturbance, recorded as noise, which overwhelms all the actual data you’re trying to get from the sample.”

The high noise level requires the probe to tap harder to find a signal. This means the tip deforms a cell as the probe presses down, and only large, stiff structural elements such as the nucleus are visible, rendering AFM unable to resolve the membrane’s structure, properties and contours with high resolution.

Yu’s group devised a solution to the problem by allowing the cantilever to oscillate in air above the liquid while the sample is still submerged. They attached a thin, long nanoneedle – a structure the group developed previously – to the end of the probe, effectively extending the tip.

“We call it ‘trolling mode’ AFM, as in fishing where a part of the fishing line is immersed in water and the other part above,” Yu said.

While AFM of soft tissues with a submerged probe is like trying to club fish with a large paddle in a wave pool, the new arrangement is like trolling a fishing line in a calm pond. The nanoneedle displaces very little of the liquid and causes very little drag, yet is very responsive, so that the cantilever can oscillate very gently with very small amplitude.

“Once you remove the noise, all the information you’re getting is from the sample, instead of from the interaction between the tip and the liquid,” Yu said.

Using trolling AFM, the group gained high-resolution topographical images of human cells.

“We can tap with such small force that we can reveal the regional contours of the membrane,” said Ning Wang, a professor of mechanical science and engineering and a co-author of the paper. “Not only that, more importantly, we get the viscoelastic map. We put a little bit of force on it, and see how viscoelastic it is.”

Thanks to the minimal disturbance, trolling AFM also can operate at high frequency, which could allow researchers to study the dynamics of cellular structures that previously were not detectable.

Next, the researchers want to expand the utility of this instrument with additional dynamic measurement capability. The team also will work with biologists to identify issues relating to cell membrane and refine trolling AFM to resolve structures in the membrane.

The National Science Foundation and the National Institutes of Health supported this work. Yu and Wang are also affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

Editor’s notes:
To contact Min-Feng Yu, call 217-333-9246; email
To contact Ning Wang, call 217-265-0913;
The paper, “Intrinsically high-Q dynamic AFM imaging in liquid with a significantly extended needle tip,” is available online.

Liz Ahlberg | University of Illinois
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>