Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing for microdeletions that predispose an embryo to develop cancer syndromes in later life

11.03.2009
Researchers have used a common laboratory technique for the first time to detect genetic changes in embryos that could predispose the resulting children to develop certain cancer syndromes.

Current preimplantation genetic diagnosis techniques can detect mutations in very small bits of genes or DNA, but, until now, it wasn't easy to detect deletions involving whole genes or long sections of DNA in embryos.

The study, published online today (Wednesday 11 March) in Europe's leading reproductive medicine journal Human Reproduction [1], uses a technique called fluorescent in situ hybridization (FISH) to detect losses of small parts of whole chromosomes (microdeletions) in a single cell from an embryo. The work opens the way to test for microdeletions in patients with other genetic conditions as well as the two cancer predisposition syndromes treated in this study. [2]

Professor Joris Vermeesch, coordinator of the Genomics Core and head of Constitutional Cytogenetics, and Evelyne Vanneste, a PhD student, both at the Center for Human Genetics, University Hospital Leuven (Belgium), and their colleagues used FISH to carry out PGD in embryos from three couples where the women carried microdeletions for either neurofibromatosis type 1 (NF1) or Von Hippel-Lindau disease (VHL). As a result, the woman with the VHL mutation gave birth to healthy twins from embryos selected using FISH PGD.

Neurofibromatosis type 1 (also known as Von Recklinghausen disease) is a common inherited condition with an incidence at birth of one in 3,000-3,500. NF1 patients develop tumours of the nervous system, pigmented patches of skin and can have lower IQs. In 95% of people with NF1, a mutation is found in the NF1 gene, which is a tumour suppressor gene; but five per cent of NF1 patients have microdeletions of the gene, and large microdeletions can result in more severe symptoms.

Von Hippel-Lindau (VHL) disease is a rarer cancer syndrome, occurring in about one in 36,000 births. Symptoms of the disease include benign tumours of the central nervous system and benign and malignant tumours of organs such as the kidneys, adrenal glands and pancreas. It is an inherited condition caused by a mutation in the VHL tumour suppressor gene.

The strands of DNA that twist together to form the double helix structure are made up of lots of small sections called nucleotides. The nucleotides are made up of the four DNA bases – adenine, thymine, guanine and cytosine (or A,T,C,G). Mutations that can be detected by the conventional PCR (polymerase chain reaction) technique used in PGD are usually mutations of a single nucleotide or base. A deletion or microdeletion normally involves the loss of larger numbers of nucleotides.

Prof Vermeesch explained: "Current techniques using PCR to detect abnormalities in embryos can detect one base, nucleotide or letter change in the DNA, but they cannot be used when a person has a loss of the whole gene or a lot of letters – a microdeletion. Patients with these cancer predisposition syndromes, and some other conditions, usually carry only a single microdeletion. Now, for the first time, we have used FISH to detect these microdeletions in the embryo and thus can help carriers to create offspring without those anomalies.

"Importantly, microdeletions are not so rare in neurofibromatosis type 1. It is also becoming clear that genomic disorders caused by microdeletions, duplications and copy number variations are much more frequent than previously thought. The techniques we have used in this study will help a wide range of microdeletion carriers."

For each of the three women, the researchers created probes that could be used to identify NF1 or VHL deletions in the embryos. The embryos were obtained from the women using normal assisted reproduction techniques. They took two cells from each embryo and performed FISH to probe them for the microdeletions. Only embryos that FISH had identified as being healthy, without any microdeletions, were transferred to the women's wombs.

Ms Vanneste explained that although they had to make FISH probes specific to each woman, the NF1 microdeletions found tended to recur. "Therefore, most NF1 patients with a deletion carry the same deletion and our FISH PGD conditions can be rapidly replicated and re-used in other deletion carriers. It seems likely that the number of families that can benefit from FISH PGD will increase in years to come and we are continuing to help more families using this approach. However, for each condition a new probe has to be made. This is time-consuming, but we are currently developing tools to identify all similar genetic imbalances with a single technology."

[1] Preimplantation genetic diagnosis using fluorescent in situ hybridization for cancer predisposition syndromes caused by microdeletions. Human Reproduction. doi:10.1093/humrep/dep034

[2] PGD can be carried out already to detect a genetic susceptibility for some cancers, but only if the specific mutation is know (e.g. to detect the BRCA1/2 mutations that can lead to breast cancer developing). The majority of these cases involve a change in a single nucleotide, not a microdeletion.

Emma Mason | EurekAlert!
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>