Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Fish Swim: McCormick Researchers Examine Mechanical Bases for the Emergence of Undulatory Swimmers

25.06.2013
Findings could provide insights in evolutionary biology, neural control of movement, bio-inspired devices
How do fish swim? It is a simple question, but there is no simple answer.

Researchers at Northwestern University have revealed some of the mechanical properties that allow fish to perform their complex movements. Their findings, published on June 13 in the journal PLOS Computational Biology, could provide insights in evolutionary biology and lead to an understanding of the neural control of movement and development of bio-inspired underwater vehicles.

“If we could play God and create an undulatory swimmer, how stiff should its body be? At what wave frequency should its body undulate so it moves at its top speed? How does its brain control those movements?” said Neelesh Patankar, professor of mechanical engineering at Northwestern’s McCormick School of Engineering and Applied Science. “Millennia ago, undulatory swimmers like eels that had the right mechanical properties are the ones that would have survived.”

The researchers used computational methods to test assumptions about the preferred evolutionary characteristics. For example, species with low muscle activation frequency and high body stiffness are the most successful; the researchers found the optimal values for each property.

“The stiffness that we predict for good swimming characteristics is, in fact, the same as the experimentally determined stiffness of undulatory swimmers with a backbone,” said Amneet Bhalla, graduate student in mechanical engineering at McCormick and one of the paper’s authors.

“Thus, our results suggest that precursors of a backbone would have given rise to animals with the appropriate body stiffness,” added Patankar. “We hypothesize that this would have been mechanically beneficial to the evolutionary emergence of swimming vertebrates.”

In addition, species must be resilient to small changes in physical characteristics from one generation to the next. The researchers confirmed that the ability to swim, while dependent upon mechanical parameters, is not sensitive to minor generational changes; as long as the body stiffness is above a certain value, the ability to swim quickly is insensitive to the value of the stiffness, the researchers found.

Finally, making a connection to the neural control of movement, the researchers analyzed the curvature of its undulations to determine if it was the result of a single bending torque, or if precise bending torques were necessary at every point along its body. They learned that a simple movement pattern gives rise to the complicated-looking deformation.

“This suggests that the animal does not need precise control of its movements,” Patankar said.

To make these determinations, the researchers applied a common physics concept known as “spring mass damper” — a model, applied to everything from car suspension to Slinkies, that determines movement in systems that are losing energy — to the body of the fish.

This novel approach for the first time unified the concepts of active and passive swimming — swimming in which forcing comes from within the fish (active) or from the surrounding water (passive) — by calculating the conditions necessary for the fish to swim both actively and passively.

The paper, “A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming,” was authored by Patankar, Bhalla, and Boyce E. Griffith, assistant professor of medicine and mathematics at New York University.

The work was supported by the National Science Foundation (NSF).

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>