Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In fireflies, flightless females lose out on gifts from males

06.04.2011
Firefly partners work together to find work-family balance

Every parent with young children knows that couples need to work together to accomplish the myriad tasks waiting both at work and at home. But it may come as a surprise that fireflies also juggle their commitments to find a comfortable work-family balance.

According to new research led by biologists at Tufts University's School of Arts and Sciences, wingless "stay-at-home" female fireflies get less support from their mates than females who are able to fly.

There are more than 2000 species of fireflies around the globe, and these beetles show astoundingly diverse lifestyles. For some familiar backyard sparklers, both the male and female firefly have wings and can easily take to the air.

However, many female fireflies can only dream about flying because they don't have any wings. These wingless belles lounge on the ground or clamber onto twigs, where they lure flying males with a steady luminescent glow -- the common European glow-worm is a shining example.

A study published in the April 2011 issue of the journal Evolution (online Dec. 22) by Tufts biologists and collaborators at the University of Georgia and the Taiwan Museum of Science reveals a surprising link between these flightless females and how much their male partners are willing to contribute to their collective reproductive gain.

Like all creatures, firefly females maximize their evolutionary success by producing lots of offspring. Previous work by the Tufts research team has shown that some male fireflies donate a "nuptial gift" to females during mating. This gift contains sperm wrapped up in a nutritious high-protein package that helps a female to produce more eggs. Because most fireflies stop eating once they become adults, male nuptial gifts are significant for both sexes.

To explore these insects' work-family balance, the Tufts researchers set out to answer the question: When firefly females are flightless, does it change the division of reproductive labor between the sexes? That is, do firefly males still give nuptial gifts?

"These females are definitely committed to being 'stay-at-home-moms' because they're basically a huge sac of eggs," said Sara Lewis, professor of biology at Tufts and co-author of the paper. By giving up wings, such flightless females can devote all their energy to churning out eggs and so gain an advantage over their winged cousins.

"Since wingless females would already enjoy high reproductive output, we thought males might no longer need to support their partners' reproduction with added nutrients," explained Tufts doctoral candidate Adam South, the lead author on the paper.

Working with firefly experts from around the world, the Tufts biologists studied the reproductive structures of 32 different species. They confirmed that in those with flying females, males did bestow nuptial gifts. In most species with flightless females, however, the males did not do so.

Looking Back at the First Fireflies

The researchers also peered back in time to the first fireflies.

In collaboration with colleagues in Georgia and Taiwan, the Tufts biologists used existing knowledge of the evolutionary relationships among different firefly species to examine how flight and nuptial gifts have changed over time.

In very early fireflies, the biologists discovered, females sported normal wings and accepted nuptial gifts from their male suitors. But the evolutionary tree also showed that nearly every time females stopped flying around, their partners retreated to transferring only sperm, revealing a surprising evolutionary correlation between these male and female traits.

So just like people, firefly couples also adjust how much effort each one will devote to work -- flight in this case -- or to family. With stay-at-home moms investing more in reproduction, some firefly males apparently decide that gifts are no longer worth giving.

Lewis noted that it remains to be seen whether this co-evolutionary linkage has also developed in other insects with flightless females. It is also unclear why females in some species of fireflies, but not others, have been able to survive and thrive without flight.

This research was supported by National Science Foundation Grant #IOB-0543738.

South, Adam, Stanger-Hall, Kathrin, Jeng, Ming-Luen, and Lewis, Sara M., "Correlated Evolution of Female Neoteny and Flightlessness with Male Spermatophore Production in Fireflies (Coleopetera: Lampyridae)," Evolution, no. doi: 10.1111/j.1558-5646.2010.01199.x.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university is widely encouraged.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>