Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Findings on Beta-Cells and Insulin Resistance

Researchers of the Max Delbrück Center (MDC) have gained new insights into how the insulin-producing beta-cells of the body adapt to an increased demand of this hormone during insulin resistance.

In this condition the body produces insulin but cannot use it effectively and it can lead to the onset of type-2 diabetes. Dr. Matthew Poy`s research group identified several components of a network within the microRNA (miRNA) pathway which help beta-cells to meet changes in the insulin demand of the body.

They now showed for the first time how beta cells make use of this pathway to control proliferation and insulin release upon restoration of insulin sensitivity in obese mice (Cell Metabolism)*.

Insulin is a hormone produced by the beta cells of the pancreas to regulate circulating blood glucose for energy. Glucose enters the bloodstream after a meal leading to an increase in insulin concentrations in the body which directs glucose uptake by muscle and fat cells. While the precise cause of insulin resistance is not known, elevated levels of the hormone (hyperglycemia) remain in circulation, do to a loss of insulin action in its target tissues. As a result, blood glucose levels remain elevated exacerbating the metabolic consequences of hyperglycemia.

As insulin resistance progresses over time, islet beta-cells are very dynamic in nature and can adapt to this metabolic stress by proliferating in order to accommodate the increased demand for insulin. Since all of the body’s cells need glucose for energy, the beta-cells of the pancreas continually produce more insulin to ensure proper glucose homeostasis. This process can go on for years without notice up to the point where type-2 diabetes finally develops.

Dr. Poy and his colleagues carefully addressed how beta cells make use of the microRNA (miRNA) pathway to proliferate and secrete insulin during changes in insulin sensitivity. “Recent evidence has shown that the miRNA pathway is an important regulator of gene expression in response to metabolic stress”, Dr. Poy pointed out. “It also has been known that the miRNA pathway has an essential role in the proliferation of beta-cells, however the extent of its contribution is unclear”, he said.

MicroRNAs are small ribonucleic acidsmolecules with about 22 nucleotides that are known transcriptional products of DNA. Only within the last 10 years, researchers have discovered that microRNAs play an important role in virtually all mammalian cells. While their precise function remains unclear, miRNAs have been established as significant regulators of gene expression. That is, miRNAs control which proteins and how much of a protein cells secrete.

Sudhir G. Tattikota, Thomas Rathjen and Dr. Poy now have identified two different miRNAs with independent roles in the insulin metabolism including miRNA-184 (miR-184). The researchers could show that this microRNA is silenced as insulin resistance develops – in mice as wells as in humans who have acquired type-2 diabetes.

As a result of the silencing of this miRNA, expression of targeted genes including Argonaute2 (Ago2), are upregulated in the beta cells. Ago2 belongs to the Argonaute family of proteins that are known to guide the miRNAs to their target genes. According to the researchers this protein plays a key role during insulin resistance by facilitating beta-cell proliferation and the production of more insulin to compensate for insulin resistance.

The researchers worked with obese mice that had already developed insulin resistance. Obesity is one among others a risk factor for the developing of diabetes type-2. When the researchers deleted Ago2 specifically in the beta cells of the pancreas in these mice, the compensatory proliferation of the beta-cells was reduced. “This underlines the integral role of Ago2 and the miRNA pathway in this process”, Dr. Poy and his colleagues stressed.

How a Low-carbohydrate diet restores function of beta-cells in obese mice
Previous studies in mice and humans have shown that a high fat, low carbohydrate or “ketogenic” diet can improve insulin sensitivity. The researchers showed that obese mice fed this diet restored the function of miR-184, thereby controlling both beta cell proliferation as well as the release of insulin by targeting Ago2 as well as another gene (Slc25a22) respectively.

With this study, the researchers have shown that targeting of Ago2 by miRNA-184 is an essential component of the compensatory response to regulate proliferation of beta cells according to insulin sensitivity. Dr. Poy: “Our observations on the effects of the ketogenic diet on microRNA function in the beta-cell unify several poorly understood mechanisms and reinforce the potential in studying the role of small RNAs in physiologic stresses”. He and his colleagues hope that research on the miRNA pathway should bring clarity in understanding how the network of small RNAs contribute to maintaining essential metabolic processes and how their failure ultimately leads to disease.

*Cell Metabolism,

Argonaute2 mediates compensatory expansion of the pancreatic beta-cell

Sudhir G. Tattikota1,12, Thomas Rathjen1,12, Sarah J. McAnulty1, Hans-Hermann Wessels1, Ildem Akerman4, Martijn van de Bunt5, Jean Hausser6,Jonathan L.S. Esguerra7, Anne Musahl1, Amit K. Pandey1, Xintian You1, Wei Chen1, Pedro L. Herrera8, Paul R. Johnson5,9,10, Donal O’Carroll11, Lena Eliasson7, Mihaela Zavolan6, Anna L. Gloyn5,9, Jorge Ferrer4, Ruby Shalom-Feuerstein3, Daniel Aberdam2, and Matthew N. Poy1#

1 Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
2 INSERM U976, University of Paris Diderot, 75475 France
3 Department of Anatomy and Cell Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
4Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
5 Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, OX3 7LJ Oxford, UK
6 Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
7 Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden
8 Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
9NIHR Oxford Biomedical Research Centre, ORH Trust, OCDEM, Churchill Hospital, OX3 7LJ Oxford, UK
10Nuffield Department of Surgery, University of Oxford, OX3 9DU Oxford, UK
11 European Molecular Biology Laboratory, 00015 Monterotondo Scalo Italy
12 these authors contributed equally
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | Max-Delbrück-Centrum
Further information:

More articles from Life Sciences:

nachricht Supercoiled DNA is far more dynamic than the 'Watson-Crick' double helix
13.10.2015 | University of Leeds

nachricht New Oregon approach for 'nanohoops' could energize future devices
13.10.2015 | University of Oregon

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>