Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings on Beta-Cells and Insulin Resistance

08.01.2014
Researchers of the Max Delbrück Center (MDC) have gained new insights into how the insulin-producing beta-cells of the body adapt to an increased demand of this hormone during insulin resistance.

In this condition the body produces insulin but cannot use it effectively and it can lead to the onset of type-2 diabetes. Dr. Matthew Poy`s research group identified several components of a network within the microRNA (miRNA) pathway which help beta-cells to meet changes in the insulin demand of the body.

They now showed for the first time how beta cells make use of this pathway to control proliferation and insulin release upon restoration of insulin sensitivity in obese mice (Cell Metabolism)*.

Insulin is a hormone produced by the beta cells of the pancreas to regulate circulating blood glucose for energy. Glucose enters the bloodstream after a meal leading to an increase in insulin concentrations in the body which directs glucose uptake by muscle and fat cells. While the precise cause of insulin resistance is not known, elevated levels of the hormone (hyperglycemia) remain in circulation, do to a loss of insulin action in its target tissues. As a result, blood glucose levels remain elevated exacerbating the metabolic consequences of hyperglycemia.

As insulin resistance progresses over time, islet beta-cells are very dynamic in nature and can adapt to this metabolic stress by proliferating in order to accommodate the increased demand for insulin. Since all of the body’s cells need glucose for energy, the beta-cells of the pancreas continually produce more insulin to ensure proper glucose homeostasis. This process can go on for years without notice up to the point where type-2 diabetes finally develops.

Dr. Poy and his colleagues carefully addressed how beta cells make use of the microRNA (miRNA) pathway to proliferate and secrete insulin during changes in insulin sensitivity. “Recent evidence has shown that the miRNA pathway is an important regulator of gene expression in response to metabolic stress”, Dr. Poy pointed out. “It also has been known that the miRNA pathway has an essential role in the proliferation of beta-cells, however the extent of its contribution is unclear”, he said.

MicroRNAs are small ribonucleic acidsmolecules with about 22 nucleotides that are known transcriptional products of DNA. Only within the last 10 years, researchers have discovered that microRNAs play an important role in virtually all mammalian cells. While their precise function remains unclear, miRNAs have been established as significant regulators of gene expression. That is, miRNAs control which proteins and how much of a protein cells secrete.

Sudhir G. Tattikota, Thomas Rathjen and Dr. Poy now have identified two different miRNAs with independent roles in the insulin metabolism including miRNA-184 (miR-184). The researchers could show that this microRNA is silenced as insulin resistance develops – in mice as wells as in humans who have acquired type-2 diabetes.

As a result of the silencing of this miRNA, expression of targeted genes including Argonaute2 (Ago2), are upregulated in the beta cells. Ago2 belongs to the Argonaute family of proteins that are known to guide the miRNAs to their target genes. According to the researchers this protein plays a key role during insulin resistance by facilitating beta-cell proliferation and the production of more insulin to compensate for insulin resistance.

The researchers worked with obese mice that had already developed insulin resistance. Obesity is one among others a risk factor for the developing of diabetes type-2. When the researchers deleted Ago2 specifically in the beta cells of the pancreas in these mice, the compensatory proliferation of the beta-cells was reduced. “This underlines the integral role of Ago2 and the miRNA pathway in this process”, Dr. Poy and his colleagues stressed.

How a Low-carbohydrate diet restores function of beta-cells in obese mice
Previous studies in mice and humans have shown that a high fat, low carbohydrate or “ketogenic” diet can improve insulin sensitivity. The researchers showed that obese mice fed this diet restored the function of miR-184, thereby controlling both beta cell proliferation as well as the release of insulin by targeting Ago2 as well as another gene (Slc25a22) respectively.

With this study, the researchers have shown that targeting of Ago2 by miRNA-184 is an essential component of the compensatory response to regulate proliferation of beta cells according to insulin sensitivity. Dr. Poy: “Our observations on the effects of the ketogenic diet on microRNA function in the beta-cell unify several poorly understood mechanisms and reinforce the potential in studying the role of small RNAs in physiologic stresses”. He and his colleagues hope that research on the miRNA pathway should bring clarity in understanding how the network of small RNAs contribute to maintaining essential metabolic processes and how their failure ultimately leads to disease.

*Cell Metabolism, http://dx.doi.org/10.1016/j.cmet.2013.11.015

Argonaute2 mediates compensatory expansion of the pancreatic beta-cell

Sudhir G. Tattikota1,12, Thomas Rathjen1,12, Sarah J. McAnulty1, Hans-Hermann Wessels1, Ildem Akerman4, Martijn van de Bunt5, Jean Hausser6,Jonathan L.S. Esguerra7, Anne Musahl1, Amit K. Pandey1, Xintian You1, Wei Chen1, Pedro L. Herrera8, Paul R. Johnson5,9,10, Donal O’Carroll11, Lena Eliasson7, Mihaela Zavolan6, Anna L. Gloyn5,9, Jorge Ferrer4, Ruby Shalom-Feuerstein3, Daniel Aberdam2, and Matthew N. Poy1#

1 Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
2 INSERM U976, University of Paris Diderot, 75475 France
3 Department of Anatomy and Cell Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
4Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
5 Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, OX3 7LJ Oxford, UK
6 Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
7 Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden
8 Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
9NIHR Oxford Biomedical Research Centre, ORH Trust, OCDEM, Churchill Hospital, OX3 7LJ Oxford, UK
10Nuffield Department of Surgery, University of Oxford, OX3 9DU Oxford, UK
11 European Molecular Biology Laboratory, 00015 Monterotondo Scalo Italy
12 these authors contributed equally
Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>