Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting their way to the middle

07.02.2011
Immune cells get switched off by the gradual accumulation of dense clusters of inhibitory proteins

Foreign entities within the body get chopped into pieces by antigen-presenting cells (APCs), which display the resulting chunks on their surface. These antigens can subsequently be recognized and bound by T cell receptors (TCRs), and the interaction between a T cell and an antigen-bearing APC eventually triggers the onset of an immune response against the antigen.

Inappropriate responses by this system, however, can give rise to disastrous medical consequences, and there is keen interest in developing more sophisticated ways to modulate how T cells react to perceived threats. “Ultimately, we would like to regulate T cell function and activation in order to overcome autoimmune diseases, allergy, or infectious diseases,” explains Takashi Saito, of the RIKEN Center for Allergy and Immunology (RCAI) in Yokohama.

New findings from a team led by Saito and RCAI colleague Tadashi Yokosuka could ultimately prove valuable for such efforts, by revealing insights into the mode of action of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), an inhibitor of TCR signaling1. When T cells associate with APCs, they form what is known as an ‘immunological synapse’, a juncture where numerous proteins assemble into elaborate complexes, such as the central supramolecular activation cluster (cSMAC). By establishing experimental conditions that simulate this cellular interaction, the researchers were able to monitor the dynamic rearrangements that take place at the cSMAC and its environs.

CD28, a T cell protein that promotes TCR signaling, typically assembles at a narrowly defined region of the cSMAC, where it interacts with CD80, a protein expressed on the surface of APCs. Saito, Yokosuka and colleagues determined that CTLA-4 gradually gathers at the immunological synapse and subsequently forms into clusters within the exact same area of the cSMAC as CD28, where it directly competes to bind CD80. “Positive regulation by CD28 and negative regulation by CTLA-4 are induced at the same place in the cell,” says Saito. “Without accumulating at the cSMAC, CTLA-4 cannot inhibit T cell activation.”

In addition to illuminating a mechanism by which T cell responses get fine-tuned, these findings could ultimately yield benefits for patients suffering from a variety of conditions. “Anti-CTLA-4 antibody therapy has been utilized for cancer patients, enhancing tumor immunity by inhibiting regulatory T cells, and CTLA-4-based fusion proteins have been used to block autoimmune diseases such as arthritis,” says Saito. “Our findings will enable us to explore new therapeutic concepts based on the inhibition of the dynamic movement of regulatory molecules such as CTLA-4.”

The corresponding author for this highlight is based at the Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology.

Journal information

1.Yokosuka, T., Kobayashi, W., Takamatsu, M., Sakata-Sogawa, K., Zeng, H., Hashimoto-Tane, A., Yagita, H., Tokunaga, M. & Saito, T. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T Cell activation. Immunity 33, 326–339 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>