Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting their way to the middle

07.02.2011
Immune cells get switched off by the gradual accumulation of dense clusters of inhibitory proteins

Foreign entities within the body get chopped into pieces by antigen-presenting cells (APCs), which display the resulting chunks on their surface. These antigens can subsequently be recognized and bound by T cell receptors (TCRs), and the interaction between a T cell and an antigen-bearing APC eventually triggers the onset of an immune response against the antigen.

Inappropriate responses by this system, however, can give rise to disastrous medical consequences, and there is keen interest in developing more sophisticated ways to modulate how T cells react to perceived threats. “Ultimately, we would like to regulate T cell function and activation in order to overcome autoimmune diseases, allergy, or infectious diseases,” explains Takashi Saito, of the RIKEN Center for Allergy and Immunology (RCAI) in Yokohama.

New findings from a team led by Saito and RCAI colleague Tadashi Yokosuka could ultimately prove valuable for such efforts, by revealing insights into the mode of action of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), an inhibitor of TCR signaling1. When T cells associate with APCs, they form what is known as an ‘immunological synapse’, a juncture where numerous proteins assemble into elaborate complexes, such as the central supramolecular activation cluster (cSMAC). By establishing experimental conditions that simulate this cellular interaction, the researchers were able to monitor the dynamic rearrangements that take place at the cSMAC and its environs.

CD28, a T cell protein that promotes TCR signaling, typically assembles at a narrowly defined region of the cSMAC, where it interacts with CD80, a protein expressed on the surface of APCs. Saito, Yokosuka and colleagues determined that CTLA-4 gradually gathers at the immunological synapse and subsequently forms into clusters within the exact same area of the cSMAC as CD28, where it directly competes to bind CD80. “Positive regulation by CD28 and negative regulation by CTLA-4 are induced at the same place in the cell,” says Saito. “Without accumulating at the cSMAC, CTLA-4 cannot inhibit T cell activation.”

In addition to illuminating a mechanism by which T cell responses get fine-tuned, these findings could ultimately yield benefits for patients suffering from a variety of conditions. “Anti-CTLA-4 antibody therapy has been utilized for cancer patients, enhancing tumor immunity by inhibiting regulatory T cells, and CTLA-4-based fusion proteins have been used to block autoimmune diseases such as arthritis,” says Saito. “Our findings will enable us to explore new therapeutic concepts based on the inhibition of the dynamic movement of regulatory molecules such as CTLA-4.”

The corresponding author for this highlight is based at the Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology.

Journal information

1.Yokosuka, T., Kobayashi, W., Takamatsu, M., Sakata-Sogawa, K., Zeng, H., Hashimoto-Tane, A., Yagita, H., Tokunaga, M. & Saito, T. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T Cell activation. Immunity 33, 326–339 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

Topologische Quantenchemie

21.07.2017 | Life Sciences

Pulses of electrons manipulate nanomagnets and store information

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>