Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female moths use olfactory signals to choose the best egg-laying sites

03.06.2013
Small changes in the composition of green leaf volatiles induced by herbivory guide ovipositing female moths to unattacked plants.

Researchers at the Max Planck Institute for Chemical Ecology, Jena, Germany, discovered that the ability of Manduca sexta moths to recognize changes in the profile of volatile compounds released by plants being attacked by Manduca caterpillars allows them to lay their eggs on plants that are less likely to be attacked by insects and other predators, and to avoid competing against other caterpillars of the same species for resources.


Functional calcium imaging in the antennal lobes of a female Manduca sexta moth: Different activation patterns (red spots) can be observed depending on whether the moths respond to (Z)-3-hexenyl acetate or (E)-2-hexenyl acetate. The odor of a (Z)-3-isomer or a (Z)-3 / (E)-2 ratio in favor of a (Z)-3-isomer − according to the odor bouquet of an unattacked plant − guides ovipositing Manduca females to plants that have yet been spared by herbivorous caterpillars. Copyright: A. Späthe / MPI for Chemical Ecology


Manduca sexta moth
Copyright: L. Kübler / MPI for Chemical Ecology

The results of field experiments and neurobiological studies were now published in the open access online journal eLIFE. (eLIFE, May 14, 2013, DOI: 10.7554/elife.00421)

“Green” leaf odors

Plants have developed many different strategies to defend themselves against herbivorous animals, particularly insects. In addition to mechanical defenses such as thorns and spines, plants also produce compounds that keep insects and other herbivores at bay by acting as repellents or toxins. Some of these metabolites are produced on a continuous basis by plants, whereas others – notably compounds called green-leaf volatiles – are mainly produced once the plant has been wounded or attacked. Green-leaf volatiles – which are also responsible for the smell of freshly cut grass – have been observed to provide plants with both direct protection, by inhibiting or repelling herbivores, and indirect protection, by attracting predators of the herbivores themselves.

Attracting the enemies of the herbivores

The hawkmoth Manduca sexta lays its eggs on various plants, including tobacco and Sacred Datura plants (Datura wrightii). Once the eggs have hatched into caterpillars, they start eating the leaves of their host plant, and if present in large numbers, these caterpillars can quickly defoliate and destroy the plant. In an effort to defend itself, the host plant releases green-leaf volatiles to attract various species of Geocoris, predatory bugs that eat insect eggs and tiny larvae.
One of these green-leaf volatiles released by tobacco plants is known as (Z)-3-hexenyl acetate, but enzymes released by M. sexta caterpillars’ spit change some of these molecules into (E)-2-hexenyl acetate, which has the same chemical composition but a different structure. The resulting changes in the volatile profile alerts Geocoris bugs to the presence of M. sexta caterpillars on the plant − their potential prey.

Ideal conditions for Manduca offspring

Now the scientists from the Max Planck Institute for Chemical Ecology show another interesting effect of the chemical “odor conversion”: Just like Geocoris bugs, adult female M. sexta moths are able to detect the changes in the green volatile profile emitted by Sacred Datura plants that have been damaged by M. sexta caterpillars. This alerts the moths to the fact that Geocoris bugs are likely to predate eggs and caterpillars on the plant, and as a consequence the moths lay their eggs on unattacked plants. Hereby they minimize the risk of newly laid eggs being eaten by the predators. Another positive effect is that the competition for resources with larvae that already feed on a plant is reduced.
Interdisciplinary Research: Ecology and Neurobiology

The researchers also identified the neural mechanism that allows moths to detect the slightest changes in the volatile profile of plants that have already been attacked by caterpillars. Neurobiological studies of the moth brain revealed that E- and Z- odors lead to different activation patterns. The two isomers of hexenyl acetate activated different regions in the antennal lobe of the moth (see images above). “This suggests that the female moths have isomer-specific receptors and neurons on their antennae,” says Bill Hansson, director of the institute. The combination of such neurological experiments and ecological field studies are very promising and may provide further insights into odor-guided behavior of insects in nature and agriculture.
New plant protection strategies

A similar behavioral pattern is known from potato beetles (Leptinotarsa decemlineata). An artificial application of (Z)-3- or (E)-2-hexenol, (E)-2-hexanal or 1-hexanol to potato plants lead to a disoriented behavior observed in egg-laying potato beetles. On the basis of these results, plant protection strategies seem possible which utilize artificial odor application in order to deter ovipositing insects from field crops and thereby reduce insect infestation. [McLennan /AO/JWK]

Original Publication:

Allmann, S., Späthe, A., Bisch-Knaden, S., Kallenbach, M., Reinecke, A., Sachse, S., Baldwin, I. T., Hansson, B.S. (2013). Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. eLife 2:e00421. DOI: 10.7554/eLife.00421

http://dx.doi.org/10.7554/eLife.00421

Further Information
Prof. Dr. Ian T. Baldwin, +49 3641 57-1101, baldwin@ice.mpg.de
Prof. Dr. Bill S. Hansson, +49 3641 57-1401, hansson@ice.mpg.de

Angela Overmeyer | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/1029.html?&L=0

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>