Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fate in fly sensory organ precursor cells could explain human immune disorder

23.06.2009
Notch signaling helps determine the fate of a number of different cell types in a variety of organisms, including humans.

In an article that appears in the current issue of Nature Cell Biology, researchers at Baylor College of Medicine report that a new finding about the Notch signaling pathway in sensory organ precursor cells in the fruit fly could explain the mystery behind an immunological disorder called Wiskott-Aldrich syndrome.

"This finding provides a model for how Wiskott Aldrich syndrome – a form of selective immunodeficiency in children – occurs," said Dr. Hugo Bellen (http://www.bcm.edu/db/db_fac-bellen.html), professor of molecular and human genetics and director of the Program in Developmental Biology at BCM. (http://www.bcm.edu/db/) He is also a Howard Hughes Medical Institute investigator.

It all begins with the Notch pathway, which controls cell fate.

In the fly peripheral nervous system, two daughter cells arise from a single sensory organ precursor mother cell. Among the daughter cells, Notch is activated in one and not in the other. This differential activation of signaling results in two different kinds of cells which arise from the same mother cell. Thus the fruit flies sensory organ precursor cell division has been used as a model to understand how Notch signaling is activated during asymmetric cell division.

In a screen of fruit fly mutants that have disrupted peripheral nervous system development, Akhila Rajan and An-chi Tien, two graduate students in Bellen's laboratory, identified a mutant with a cluster of neurons. This occurs when there is a problem in Notch signaling.

Ordinarily, the sensory organ progenitor cell uses the Notch pathway to specify the fate of two daughter cells called pIIa and pIIb, which arise from a single mother cell. The pIIa cells go on to become the shaft and socket cells on the exterior of the fly's external sensory organ. The pIIb, through two divisions, become the neuron and sheath – internal cells of the external sensory organ. These four types of cells become the sensory cluster.

When a cluster of neurons is observed, cell fate determination has gone wrong as too many cells of one kind are being made from the mother cell. Akhila and An-chi found that mutations in the Actin-related protein 3 (Arp3), a component of the seven protein Arp2/3 complex, resulted in the loss of Notch signaling.

This occurs because the ligand Delta – a protein that activates the Notch pathway – cannot travel properly within the sensory organ cells in the absence of Arp3 protein. In addition, they found that under normal conditions vesicles (tiny bubbles) containing the Notch activating protein Delta travel to the top of the daughter cell to a structure rich in actin. This specialized actin structure contains many membrane protrusions that increase the surface area of cells called microvilli. Under normal circumstances Delta containing vesicles traffic to the microvilli. In the Arp3 mutants, there are significantly fewer microvilli but, more important, the transport of Delta is compromised in Arp3 mutants, affecting the ability of Delta to activate Notch. This is an important part of their work.

"Normally, Delta is presented at the top of the actin structure," said Bellen. It is then encapsulated in the vesicles and travels to the basal, or bottom, of the structure. Delta then travels back to the top of the daughter cells.

Bellen and colleagues have found that the Arp2/3 complex and its activator WASp (Wiskott-Aldrich syndrome protein) function in these daughter cells to transport Delta vesicles to the apical region of the daughter cells. If this complicated trafficking of Delta does not occur, the ability of Delta to activate Notch is compromised.

"It is likely that whatever we have discovered here has a relationship to what is happening in the patients with Wiskott-Aldrich syndrome. The patients with Wiskott-Aldrich syndrome have mutations in a gene called WASp. WASp is an activator of the Arp2/3 complex. In our work we found that WASp is also required for the trafficking of Delta to the top of the actin structure," said Bellen.

Notch signaling is required for proper development, differentiation and activation of a class of immune cells called the T-cells. T-cell function is compromised in patients with Wiskott-Aldrich syndrome. Since the gene WASp is mutated in the patients with Wiskott-Aldrich syndrome, the work done by Bellen and his colleagues suggest that defects in the presentation of Delta could explain the loss and dysfunction of T-cells in patients with Wiskott-Aldrich syndrome.

Others who took part in this research include Claire M. Haueter and Karen L. Schulze.

Funding for this work came from the BCM Intellectual and Developmental Disabilities Center (http://mrrc.bcm.tmc.edu/) and the Howard Hughes Medical Institute.

When the embargo lifts, the full report will be available at http://www.nature.com/ncb/index.html

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>