Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster CARS, less damage: NIST chemical microscopy shows potential for cell diagnostics

15.10.2010
A paper by researchers at the National Institute of Standards and Technology (NIST) may breathe new life into the use of a powerful—but tricky—diagnostic technique for cell biology.

The paper,* appearing this week in the Biophysical Journal, demonstrates that with improved hardware and better signal processing, a powerful form of molecular vibration spectroscopy can quickly deliver detailed molecular maps of the contents of cells without damaging them. Earlier studies have suggested that to be useful, the technique would need power levels too high for cells.

The technique, "B-CARS,"** is one of several variations on Raman spectroscopy, which measures the frequencies associated with different modes of vibration of atoms and their bonds in a molecule. The exact mix of these frequencies is an extremely discriminating "fingerprint" for any particular molecule, so Raman spectroscopy has been used as a chemical microscope, able to detail the structure of complex objects by mapping the chemical composition at each point in a three-dimensional space.

In the biosciences, according to NIST chemist Marcus Cicerone, Raman spectroscopy has been used to detect microscopic cellular components such as mitochondria, detect how stem cells differentiate into new forms and distinguish between subtly different cell and tissue types. It can, for example, detect minor differences between various precancerous and cancerous cells, potentially providing valuable medical diagnostic information. Even better, it does this without the need to add fluorescent dyes or other chemical tags to identify specific proteins.

The catch, says Cicerone, is speed. The usual method, spontaneous Raman scattering takes a long time to gather enough data to generate a single spectrum—as much as seven minutes for fine detail—and that's for each point in the image. "Seven minutes or even five seconds per spectrum is not feasible when we need a million spectra for an image," he observes. CARS, which uses a pair of lasers to pump up the vibrational states and increase signal, is part of the answer. The current breakthroughs for a broadband CARS instrument developed at NIST since 2004, says Cicerone, gets the same information in 50 milliseconds per pixel.

The new catch is power. Recent papers have argued that to get the necessary data, the lasers used in CARS must run at power levels above the damage threshold for living cells, making the technique nearly useless for clinical purposes. Not quite, according to the NIST team. Their paper describes a combination of improved hardware to gather spectra over a very broad range of wavelengths, and a clever mathematical technique that effectively amplifies the useable signal by examining a portion of signal normally ignored as background interference. The result, says Cicerone, pushes their minimum power level below the damage threshold while retaining the speed of CARS. "We have all the information that you have in a Raman spectrum but we get it 5 to 100 times faster," he says, adding that some obvious modifications should push that higher, opening the door to more widespread use of vibrational spectroscopy in both biology and clinical diagnosis.

* S.H. Parekh, Y.J. Lee, K.A. Aamer and M.T. Cicerone. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy. Biophysical Journal. V. 99, Oct. 13, 2010.

** For "broadband coherent anti-Stokes Raman scattering"

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Biophysical Cars Cicerone Raman spectroscopy living cell specific protein

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>