Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast Personalized Therapeutic Choices Thanks to the Light-Based Sorting of Biomolecules and Cells

06.11.2017

Biomolecules and cells circulating in the blood carry diagnostic information, the analysis of which makes highly effective, individualized therapies possible. In order to tap this information, scientists from the Fraunhofer Institute for Laser Technology ILT have developed a microchip-based diagnostic device: The “AnaLighter” analyzes and sorts clinically relevant biomolecules and cells in a blood test with light. As a result, physicians can make early diagnoses, for example, of tumor and cardiovascular diseases and initiate patient-specific therapies with great efficacy. Experts from Fraunhofer ILT will be presenting this technology at COMPAMED 2017 in Düsseldorf from November 13 to 16.

The “AnaLighter” is a compact diagnostic device for sorting cells and biomolecules. Its technological core is based on an optically switchable microfluidic chip whose optical sensors and switches are connected to the chip via optical fibers. The “Microchip Based Fluorescence Activated Cell Sorter”, μFACS, functions in the following way:


Image 1: Sorting chip for analyzing and isolating cells in a blood sample.

© Fraunhofer ILT, Aachen / Volker Lannert.


Image 2: Structure of the sorting chip for sorting cells and particles with laser light.

© Fraunhofer ILT, Aachen / aligator kommunikation

The biomolecules and cells to be analyzed by fluorescence are guided through a microfluidic channel and focused hydrodynamically on a cross-section of 10 μm at the site of the optical measurement. Laser light from an optical fiber stimulates the analyte in the microfluidic channel to fluoresce. Then, micro-optics focus the laser light emerging from the fiber into the microfluidic channel, collect the fluorescent light generated there and guide it through optical fibers to the photodetector.

This fiber-optic design allows a significant reduction in the installation space and makes the μFACS more rugged compared to the prior state-of-the-art. The “AnaLighter technology” is, therefore, ideally suited for automated diagnostic applications in 24/7 operation.

Furthermore, fiber splitter technology makes it possible to generate several optical excitation channels from a laser beam cost-effectively. The advantage of our μFACS, explains the head of the Group of Clinical Diagnostics at Fraunhofer ILT, Dr. Achim Lenenbach, “lies in its ability to offer patients customized solutions designed for a specific application”.

Multispectral Detection

Depending on the application, the Aachen experts can adapt the “AnaLighter technology” individually: Via standardized fiber interfaces, wavelengths can be exchanged and easily adapted to a special measuring task without additional adjustment effort. Multiple wavelengths can be superimposed in a fiber and used for multispectral measurements.

Currently, a system with 16 detection channels is available using 6 different excitation wavelengths. This means that 16 different species can be detected simultaneously. However, the number of detection channels is not a limitation in principle and can be expanded as required.

A special feature of “AnaLighter technology” is the opto-fluidic sorting function. It is based on the fact that the viscosity of the fluid is thermally influenced by infrared laser radiation. By heating the fluid before branching, the system deflects and separates the liquid stream along with the detected analyte before the branching.

In this way, biomolecules or cells can be sorted out and stored in sample containers on the fluidic chip for further investigation. Since the branches are arranged serially, the systems can solve complex sorting tasks for separating different species.

Multiplex Diagnostics: Detecting Many Disease Markers with One Analysis

The spectrally separated detection channels of the “AnaLighter” can simultaneously detect different marker molecules in the blood. In such multiplex diagnostics, these marker molecules from a blood sample are specifically bound by a mixture of microparticles, each particle species binding exactly one molecule species to be detected.

The detection of bound marker molecules is encoded by a characteristic fluorescence label and its signal measured by one of the 16 detection channels. Such multiplex diagnosis can detect up to 16 different disease markers with only one measurement run. In annual routine checks, a general practitioner can detect a large number of possible diseases early in the course of a single blood test in order to prevent widespread diseases, i.e. cardiovascular disease.

Detecting Tumors Early

In contrast to conventional FACS systems, the μFACS technology of the Fraunhofer ILT can also process water-in-oil emulsions in addition to aqueous solutions. A few micrometer-sized aqueous droplets are passed through the fluidic channel in an oily fluid as carrier medium.

The aqueous droplets can be used as closed reaction volumes for screening applications in chemistry or biotechnology. The sorting function also makes it possible to separate out the appropriate candidates from the others during screening, in order to dispose of the relevant gene sequences in e.g. genetically modified variants.

Fraunhofer ILT at the COMPAMED

From November 13 to 16, 2017, our scientists will present the “AnaLighter technology” at the joint IVAM stand, F34.4, in Hall 8a.

Contact

Dr. rer. nat. Achim Lenenbach
Manager of the Group Clinical Diagnostics and Microsurgical Systems
Phone +49 241 8906-124
achim.lenenbach@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en
https://www.ilt.fraunhofer.de/en/fairs-and-events/fairs/compamed-2017.html

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>