Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing family for the holidays? Scientists discover how the stress might kill you

30.11.2009
New research in the Journal of Leukocyte Biology shows the link between the nervous and immune systems and how breaking that link might lead to new treatments for a wide range of autoimmune disorders

If you ever thought the stress of seeing your extended family over the holidays was slowly killing you—bad news: a new research report in the December 2009 print issue of the Journal of Leukocyte Biology (http://www.jleukbio.org) shows that you might be right.

Here's the good news: results from the same study might lead to entirely new treatments that help keep autoimmune diseases like lupus, arthritis, and eczema under control. That's because researchers from the University of Connecticut Health Center have found that the same part of our nervous system that is responsible for the fight-or-flight response (called the sympathetic nervous system) also controls regulatory T cells, which are used by the body to end an immune response once a foreign invader has been removed or destroyed.

"We show for the first time that the nervous system controls the central immune police cells, called regulatory T cells," said Robert E. Cone, Ph.D., a senior researcher in whose laboratory the work was done at the University of Connecticut Health Center. "This further shows that it is imperative to concentrate on the neuro-immune interactions and to understand how these two different systems, the immune and nervous systems, interact."

To make this discovery, Cone, Sourojit Bhowmick and colleagues injected some mice with a drug called 6-hyroxydopamine (6-OHDA) that selectively removes sympathetic nerves located in different organs, or a saline solution. Mice injected with 6-OHDA, which effectively severed the link between the nervous system and the immune system had twice as many regulatory T cells as the control group in their spleens and lymph nodes. Further analysis showed that the increase in regulatory T cells resulted from an increase in a protein called "TGF-beta," which directs the development and survival of regulatory T cells. With this information in hand, Cone and colleagues then sought to see if 6-OHDA would prevent autoimmune disorders from developing. To do this, they injected 6-OHDA or a saline solution into mice before subjecting them and a control group to conditions known to cause an autoimmune disease similar to multiple sclerosis in humans. Unlike the control group, the mice treated with 6-OHDA did not develop the autoimmune disease, showing that not only can the sympathetic nervous system negatively affect the immune system, but it also shows how it might be possible to prevent or stop autoimmune disorders.

"Ever since Hans Seyle's groundbreaking work on stress, scientists have been trying to understand why stressful situations often exacerbate autoimmune diseases and cause re-emergence of latent infections," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology. "In true fight or flight situations, stress can be a lifesaver, but understanding how the neurological response to the stress of everyday events such as seeing your family around the holidays impacts immune responses should provide opportunities for new therapies."

The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Details: Sourojit Bhowmick, Anurag Singh, Richard A. Flavell, Robert B. Clark, James O'Rourke, and Robert E. Cone. The sympathetic nervous system modulates CD4+FoxP3+ regulatory T cells via a TGF-â-dependent mechanism. J Leukoc Biol 2009 86: 1275�. doi: 10.1189/jlb.0209107 ; http://www.jleukbio.org/cgi/content/abstract/86/6/1275

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>