Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faithful allies since the Cretaceous

15.04.2014

Symbiosis between beewolves and their protective bacteria originated millions of years ago. Scientists from the Max Planck Institute for Chemical Ecology and the University of Regensburg, in collaboration with researchers in the USA, now discovered that certain wasps tightly control mother-to-offspring transmission of their bacterial symbionts. This stabilizes the symbiotic alliance and contributed to its persistence over the past 68-110 million years.

Like humans, many animals depend on beneficial microbes for survival. Although such symbioses can persist for millions of years, the factors maintaining their long-term stability remain, in most cases, unknown.


A male beewolf (Philanthus pulcherrimus) on a perch in its territory. Three genera of these digger wasps cultivate antibiotic-producing Streptomyces bacteria.

Martin Kaltenpoth / Max Planck Institute for Chemical Ecology


Symbiotic Streptomyces bacteria from the antennae of a female beewolf (Philanthus triangulum) (in false colors).

Martin Kaltenpoth / Max Planck Institute for Chemical Ecology

Scientists from the Max Planck Institute for Chemical Ecology and the University of Regensburg, in collaboration with researchers in the USA, now discovered that certain wasps tightly control mother-to-offspring transmission of their bacterial symbionts. This stabilizes the symbiotic alliance and contributed to its persistence over the past 68-110 million years. (Proceedings of the National Academy of Sciences of the USA, April 2014, DOI: 10.1073/pnas.1400457111)

Symbiotic associations are ubiquitous in nature and play a pivotal role for the ecology and evolution of most organisms on earth. This is exemplified by mykorrhizal fungi that are important nutritional partners for up to 90% of all land plants. Many symbioses have persisted for hundreds of millions of years, with a certain host species consistently associating with a specific symbiont. But how do these alliances persist?

After all, many symbionts spend part of their life cycle outside of the host’s body. In order to prevent the acquisition of ever-present environmental microbes, the host must discriminate between friends and foes.

A particularly fascinating defensive alliance occurs in the European beewolf (Philanthus triangulum), a digger wasp that hunts honeybees and provisions them for its offspring in underground nests. Previous research has shown that bacterial symbionts of the genus Streptomyces live in the wasp’s antennae and on the larval cocoons. The bacteria produce a cocktail of nine different antibiotics that fend off detrimental fungi and bacteria from infecting the developing larva in the cocoon.

This strategy to avoid infections is comparable to the combination prophylaxis used in human medicine (see press release of February 23, 2010 ("Beewolves Protect their Offspring With Antibiotics - Digger wasp larvae use bacteria against infections": http://www.ice.mpg.de/ext/fileadmin/extranet/common/documents/press_releases/Pre...).

The scientists now reconstructed the phylogenies of different beewolf species and their symbionts. An analysis of the beewolf phylogeny revealed that the symbiosis with Streptomyces first originated in the late Cretaceous, between 68 and 110 million years ago. At present, about 170 species of wasps live in symbiosis with the protective bacteria. The comparison of host and symbionts phylogenies yielded another surprising finding:

The symbionts of all beewolf species are very closely related, but their phylogeny does not exactly reflect that of their hosts, although this would be expected in case of perfect transmission of symbionts from mother to its progeny. “This pattern indicates that while beewolves occasionally replace their bacteria, they always do so with the symbiont of another beewolf species” explains Martin Kaltenpoth. “Although free-living relatives of the symbiotic bacteria are very common in beewolf habitats, they are apparently not able to stably infect beewolves and replace the native symbionts.”

To elucidate how beewolves maintain the association with their specific symbionts, the scientists generated symbiont-free beewolves and then infected them either with their native symbionts or with a related bacterium from the environment. Although both microbes grew in the wasps' antennae, only the native symbiont was successfully transferred to the offspring. “Preventing transmission of other – possibly detrimental – microbes might be important to avoid infection of the cocoon.

At the same time, beewolves ensure that their offspring inherit the true defensive symbiont”, concludes Erhard Strohm. The beewolves' strategy to transmit the appropriate symbionts provides a unique glimpse into how a symbiosis can remain stable over millions of years, and it helps explain the abundance and persistence of symbiotic associations in insects. In the future, the scientists hope to uncover the molecular basis of how beewolves manage to selectively prevent transmission of non-native bacteria. [MK]

Original Publication:
Kaltenpoth, M., Roeser-Mueller, K., Koehler, S., Peterson, A., Nechitaylo, T., Stubblefield, J.W., Herzner, G., Seger, J. & Strohm, E. (2014). Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proceedings of the National Academy of Sciences of the USA. April 2014, DOI: 10.1073/pnas.1400457111
http://dx.doi.org/10.1073/pnas.1400457111


Further Information:
Dr. Martin Kaltenpoth, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany, +49 3641 57-1800, mkaltenpoth@ice.mpg.de

Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download of high-resolution images via http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1085.html?&L=0

Angela Overmeyer | Max-Planck-Institut

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>