Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing without eyes: Hydra stinging cells respond to light

05.03.2012
In the absence of eyes, the fresh water polyp, Hydra magnipapillata, nevertheless reacts to light.

They are diurnal, hunting during the day, and are known to move, looping end over end, or contract, in response to light. New research published in BioMed Central's open access journal BMC Biology shows that stinging cells (cnidocytes) in hydra tentacles, which the animals use for self protection and to catch prey, are linked via a simple nervous system to primitive light responsive cells that co-ordinate the animals' feeding behavior.


This is the fresh water polyp, Hydra magnipapillata. Credit: Dr. David Plachetzki, University of California

Hydra are members of a family of radially symmetric animals (Cnidaria), all of which use specialized cnidocytes to catch prey. This family also includes well-known creatures such as jellyfish and corals, which, like other cnidarians, have the simple design of a mouth surrounded by tentacles. Hydra tentacles contain barbed, poison containing cnidocytes that they use to stun animals like the water flea, Daphnia, before eating them alive, and to protect themselves from attack by other animals.

Researchers from the University of California lead by Dr David Plachetzki have discovered that the light sensitive protein opsin found in sensory cells is able to regulate the firing of harpoon-like cnidocytes. These light sensitive neurons are found integrated into arsenals that include the stinging cnidocytes as well as desmoneme cnidocytes, used to grasp prey, and sticky isorhiza, which help the hydra to summersault at 10cm a day.

The linking of opsin to cnidocytes explains how hydra are able to respond to light even though they do not have eyes. Dr Plachetzki described how other proteins necessary for phototransduction are also present in the sensory cells. "Not only did we find opsin in the sensory neurons that connect to cnidocytes in the hydra, but we also found other components of phototransduction in these cells. These included cyclic nucleotide gated ion channels (CNG) required to transfer the signal and a hydra version of arrestin, which wipes the phototransduction slate clean for a second signal."

Dr Plachetzki continued, "We were also able to demonstrate that cnidocyte firing itself is effected by the light environment and that these effects are reversed when components of the phototransduction cascade are turned off."

Cnidarians have been around for over 600 million years. However the hydra's simple approach to using light, to aid survival and increase their chances of catching prey, uses the same visual pathway as humans and hints at a common ancestor.

Notes to Editors

1. Cnidocyte discharge is regulated by light and opsin-mediated phototransduction
David C Plachetzki, Caitlin R Fong and Todd H Oakley
BMC Biology (in press)
Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. BMC Biology is the flagship biology journal of the BMC series, publishing open-access, peer-reviewed research and methodology articles of special importance and broad interest in any area of biology, as well as reviews, opinion pieces, comment and Q&As on topics of special or topical interest.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

Further reports about: Cnidaria Hydra cnidocytes hydra tentacles stinging cells synthetic biology

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>