Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing without eyes: Hydra stinging cells respond to light

05.03.2012
In the absence of eyes, the fresh water polyp, Hydra magnipapillata, nevertheless reacts to light.

They are diurnal, hunting during the day, and are known to move, looping end over end, or contract, in response to light. New research published in BioMed Central's open access journal BMC Biology shows that stinging cells (cnidocytes) in hydra tentacles, which the animals use for self protection and to catch prey, are linked via a simple nervous system to primitive light responsive cells that co-ordinate the animals' feeding behavior.


This is the fresh water polyp, Hydra magnipapillata. Credit: Dr. David Plachetzki, University of California

Hydra are members of a family of radially symmetric animals (Cnidaria), all of which use specialized cnidocytes to catch prey. This family also includes well-known creatures such as jellyfish and corals, which, like other cnidarians, have the simple design of a mouth surrounded by tentacles. Hydra tentacles contain barbed, poison containing cnidocytes that they use to stun animals like the water flea, Daphnia, before eating them alive, and to protect themselves from attack by other animals.

Researchers from the University of California lead by Dr David Plachetzki have discovered that the light sensitive protein opsin found in sensory cells is able to regulate the firing of harpoon-like cnidocytes. These light sensitive neurons are found integrated into arsenals that include the stinging cnidocytes as well as desmoneme cnidocytes, used to grasp prey, and sticky isorhiza, which help the hydra to summersault at 10cm a day.

The linking of opsin to cnidocytes explains how hydra are able to respond to light even though they do not have eyes. Dr Plachetzki described how other proteins necessary for phototransduction are also present in the sensory cells. "Not only did we find opsin in the sensory neurons that connect to cnidocytes in the hydra, but we also found other components of phototransduction in these cells. These included cyclic nucleotide gated ion channels (CNG) required to transfer the signal and a hydra version of arrestin, which wipes the phototransduction slate clean for a second signal."

Dr Plachetzki continued, "We were also able to demonstrate that cnidocyte firing itself is effected by the light environment and that these effects are reversed when components of the phototransduction cascade are turned off."

Cnidarians have been around for over 600 million years. However the hydra's simple approach to using light, to aid survival and increase their chances of catching prey, uses the same visual pathway as humans and hints at a common ancestor.

Notes to Editors

1. Cnidocyte discharge is regulated by light and opsin-mediated phototransduction
David C Plachetzki, Caitlin R Fong and Todd H Oakley
BMC Biology (in press)
Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. BMC Biology is the flagship biology journal of the BMC series, publishing open-access, peer-reviewed research and methodology articles of special importance and broad interest in any area of biology, as well as reviews, opinion pieces, comment and Q&As on topics of special or topical interest.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

Further reports about: Cnidaria Hydra cnidocytes hydra tentacles stinging cells synthetic biology

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>