Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explosive Nanotechnology

14.08.2013
Highly reactive nanoenergetic formulations based on periodate salts

Whether they are rocket propellants or fireworks, all explosives contain a fuel and an oxidizing agent. Sometimes both are in the same molecule, like in TNT; sometimes the explosive is a mixture, like Thermite.



In mixtures, the smaller the particles, the higher the explosive force. American scientists have reported in the journal Angewandte Chemie a new aerosol spray drying method for the generation of periodate nanoparticles that can be used in the formulation of highly reactive explosives.

Energetic mixtures usually have a higher energy density than explosive materials with both components in a single molecule. However, mixtures generally release the energy more slowly because the reaction partners have to find each other.

Nanoenergetics researchers are attempting to achieve faster and more intensive mixing of the fuel and oxidizing agents by drastically reducing the scale of the distances involved. In most nanoenergetic formulations, nanoaluminum (aluminum nanoparticles) is used as the fuel and metal oxides as the oxidizing agents.

Highly oxidizing compounds with high oxygen content, such as perchlorate are an alternative, but cannot be stored as long, partly because they are very hygroscopic. Perchlorates can also cause health problems and environmental damage. Periodates are possible substitutes. They are minimally toxic and don’t absorb water. However, the production of nanoparticles of periodate salts has proven very difficult.

A team led by Michael R. Zachariah at the University of Maryland has now overcome this problem. Their secret is a simple but versatile aerosol spray drying process. An aqueous solution is continuously atomized to form microdroplets, which give off water as they dry, forming nanoscopic grains of salt.

In formulations with nanoaluminum as fuel, this new nanoperiodate demonstrated superior reactivity. “Our formulations resulted in the highest gas pressure pulses described to date for nanoenergetic materials,” reports Zachariah.

By using special electron microscopic and mass spectrometric techniques in which the samples can be heated extremely fast, the researchers explored the reaction mechanisms involved.

They discovered that the release of gas-phase oxygen is critical for the ignition and combustion of the periodate formulations. The decomposition of potassium periodate (KIO4) takes place in two steps. First oxygen splits off.

The resulting KIO3 then further decomposes to potassium iodide (KI) and oxygen. “Different from most metal oxide decompositions, the first step of periodate decomposition is exothermic, releasing heat,” explains Zachariah. “This is presumably the reason for the low ignition temperature.”

About the Author
Dr. Michael R. Zachariah is a Professor of Chemical Engineering and Chemistry at the University of Maryland. His expertise is in the area of nanoparticle synthesis and metrology, and the high temperature materials chemistry of nanomaterials including those related to energetic.
Author: Michael Zachariah, University of Maryland, College Park (USA), http://www.chem.umd.edu/michael-zachariah/
Title: Super-reactive Nanoenergetic Gas Generators Based on Periodate Salts
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201303545

Michael Zachariah | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>