Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Examining TLR4 influences of B cell response

08.05.2009
Chronic inflammation, which is at the root of multiple diseases, links periodontal disease to increased incidence of cardiovascular disease.

The activation of Toll-Like Receptors, which are essential components of the immune response to certain pathogens, promotes chronic inflammation in periodontal disease.

Of these receptors TLR4 is one of a family of receptors that provides critical links between immune stimulants produced by microorganisms and the host response. It stands out because it plays a key role in systemic inflammation by stimulating a type of white blood cells produced in bone marrow.

Known as B cells they are the cornerstone of the body's antibody production system. The ability of pathogens that chronically infect the mouth to induce TLR4 responses indicates that TLR4 plays a role in the relationship between periodontal disease and cardiovascular disease.

The link between TLR4 activity and periodontal disease, and the importance of B cells in oral immunity prompted a team of Boston University School of Medicine (BUSM) researchers, led by Barbara Nikolajczyk, an associate professor of microbiology and medicine, and her co-investigator, Lisa Gnaley-Leal, an assistant professor of medicine and microbiology, to question whether B cells respond to chronic periodontal disease infection through TLR4.

Tests compared B cells from human blood collected from both healthy volunteers and patients with aggressive periodontitis but no other known disease. The study, published in the Journal of Leukocyte Biology, showed that people with periodontal disease had a higher percentage of peripheral blood and tissue B cells that expressed TLR4. These TLR4-expressing B cells harbored significant changes in the pathways located downstream of TLR4, including unexpected decreases in inflammatory gene expression. Decreased inflammatory gene expression in TLR4-expressing B cells is highly likely to alter the immune responses of periodontal disease patients during inflammation as compared to healthy individuals.

The study highlights two fundamentally different responses by TLR4-expressing cells from periodontal disease patients: activation of monocytes, a type of white blood cell that ingests bacteria and tissue debris, versus inactivation of B cells.

"Overall, these findings demonstrated that the proposed strategy of regulating systemic inflammation disease by regulating TLR4 expression/activation must account for this newly identified source of TLR4 activity, B cells," the study states.

In addition to Nikolajczyk, the authors of the study, "B cells from periodontal disease patients express surface Toll-like receptor 4,"are Hyunjin Shin, research assistant, and Yue Zhang, research associate, of the BUSM's department of microbiology, Madhumita Jagannathan, a graduate research assistant, at BUSM's Pathology Department, and Hatice Hasturk, Alpdogan Kantarci, both assistant professors and research assistant Hongsheng Liu and Professor Thomas E. Van Dyke, of the Department of Periodontology and Oral Biology at Boston University's Goldman School of Dental Medicine.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>