Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Examining TLR4 influences of B cell response

08.05.2009
Chronic inflammation, which is at the root of multiple diseases, links periodontal disease to increased incidence of cardiovascular disease.

The activation of Toll-Like Receptors, which are essential components of the immune response to certain pathogens, promotes chronic inflammation in periodontal disease.

Of these receptors TLR4 is one of a family of receptors that provides critical links between immune stimulants produced by microorganisms and the host response. It stands out because it plays a key role in systemic inflammation by stimulating a type of white blood cells produced in bone marrow.

Known as B cells they are the cornerstone of the body's antibody production system. The ability of pathogens that chronically infect the mouth to induce TLR4 responses indicates that TLR4 plays a role in the relationship between periodontal disease and cardiovascular disease.

The link between TLR4 activity and periodontal disease, and the importance of B cells in oral immunity prompted a team of Boston University School of Medicine (BUSM) researchers, led by Barbara Nikolajczyk, an associate professor of microbiology and medicine, and her co-investigator, Lisa Gnaley-Leal, an assistant professor of medicine and microbiology, to question whether B cells respond to chronic periodontal disease infection through TLR4.

Tests compared B cells from human blood collected from both healthy volunteers and patients with aggressive periodontitis but no other known disease. The study, published in the Journal of Leukocyte Biology, showed that people with periodontal disease had a higher percentage of peripheral blood and tissue B cells that expressed TLR4. These TLR4-expressing B cells harbored significant changes in the pathways located downstream of TLR4, including unexpected decreases in inflammatory gene expression. Decreased inflammatory gene expression in TLR4-expressing B cells is highly likely to alter the immune responses of periodontal disease patients during inflammation as compared to healthy individuals.

The study highlights two fundamentally different responses by TLR4-expressing cells from periodontal disease patients: activation of monocytes, a type of white blood cell that ingests bacteria and tissue debris, versus inactivation of B cells.

"Overall, these findings demonstrated that the proposed strategy of regulating systemic inflammation disease by regulating TLR4 expression/activation must account for this newly identified source of TLR4 activity, B cells," the study states.

In addition to Nikolajczyk, the authors of the study, "B cells from periodontal disease patients express surface Toll-like receptor 4,"are Hyunjin Shin, research assistant, and Yue Zhang, research associate, of the BUSM's department of microbiology, Madhumita Jagannathan, a graduate research assistant, at BUSM's Pathology Department, and Hatice Hasturk, Alpdogan Kantarci, both assistant professors and research assistant Hongsheng Liu and Professor Thomas E. Van Dyke, of the Department of Periodontology and Oral Biology at Boston University's Goldman School of Dental Medicine.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>