Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolutionary increase in size of the human brain explained

17.08.2012
Research links part of a protein to rapid change in cognitive ability

Researchers have found what they believe is the key to understanding why the human brain is larger and more complex than that of other animals.

The human brain, with its unequaled cognitive capacity, evolved rapidly and dramatically.

"We wanted to know why," says James Sikela, PhD, who headed the international research team that included researchers from the University of Colorado School of Medicine, Baylor College of Medicine and the National Institutes of Mental Health. "The size and cognitive capacity of the human brain sets us apart. But how did that happen?"

"This research indicates that what drove the evolutionary expansion of the human brain may well be a specific unit within a protein – called a protein domain -- that is far more numerous in humans than other species."

The protein domain at issue is DUF1220. Humans have more than 270 copies of DUF1220 encoded in the genome, far more than other species. The closer a species is to humans, the more copies of DUF1220 show up. Chimpanzees have the next highest number, 125. Gorillas have 99, marmosets 30 and mice just one. "The one over-riding theme that we saw repeatedly was that the more copies of DUF1220 in the genome, the bigger the brain. And this held true whether we looked at different species or within the human population."

Sikela, a professor at the CU medical school, and his team also linked DUF1220 to brain disorders. They associated lower numbers of DUF1220 with microcephaly, when the brain is too small; larger numbers of the protein domain were associated with macrocephaly, when the brain is too large.

The findings were reported today in the online edition of The American Journal of Human Genetics. The researchers drew their conclusions by comparing genome sequences from humans and other animals as well as by looking at the DNA of individuals with microcephaly and macrocephaly and of people from a non-disease population.

"The take home message was that brain size may be to a large degree a matter of protein domain dosage," Sikela says. "This discovery opens many new doors. It provides new tools to diagnose diseases related to brain size. And more broadly, it points to a new way to study the human brain and its dramatic increase in size and ability over what, in evolutionary terms, is a short amount of time."

Dan Meyers | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: DUF1220 brain size evolutionary history genome sequence human brain

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>