Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can evolution outpace climate change?

Animals and plants may not be able to evolve their way out of the threat posed by climate change, according to a UC Davis study of a tiny seashore animal. The work was published yesterday (June 8) in the journal Proceedings of the Royal Society B.

The tide pool copepod Tigriopus californicus is found from Alaska to Baja California — but in a unique lab study, the animals showed little ability to evolve heat tolerance.

“This is a question a lot of scientists have been talking about,” said study co-author Eric Sanford, an associate professor of evolution and ecology at UC Davis and a researcher at the university’s Bodega Marine Laboratory. “Do organisms have the ability to adapt to climate change on a timescale of decades?”

UC Davis graduate student Morgan Kelly, the first author of the paper, collected copepods from eight locations between Oregon and Baja California in Mexico. The tiny shrimplike animals, about a millimeter long, live in tide pools on rocky outcrops high in the splash zone.

Kelly grew the short-lived copepods in the lab for 10 generations, subjecting them to increased heat stress to select for more heat-tolerant animals.

At the outset, copepods from different locations showed wide variability in heat tolerance. But within those populations, Kelly was able to coax only about a half-degree Celsius (about one degree Fahrenheit) of increased heat tolerance over 10 generations. And in most groups, the increase in heat tolerance had hit a plateau before that point.

In the wild, these copepods can withstand a temperature swing of 20 degrees Celsius a day, Kelly said. But they may be living at the edge of their tolerance, she said.

Although the copepods are widespread geographically, individual populations are very isolated, confined to a single rocky outcrop where wave splash can carry them between pools. That means there is very little flow of new genes across the population as a whole.

“It’s been assumed that widespread species have a lot of genetic capacity to work with, but this study shows that may not be so,” said co-author Rick Grosberg, professor of evolution and ecology at UC Davis. Many other species of animals, birds and plants face stress from climate change, and their habitats have also been fragmented by human activity -- perhaps more than we realize, he said.

“The critical point is that many organisms are already at their environmental limits, and natural selection won’t necessarily rescue them,” Grosberg said.

The study was funded by the National Science Foundation.

Media contact(s):
Morgan Kelly, Evolution and Ecology,
Eric Sanford, Bodega Marine Laboratory, (707) 875-2040,
Rick Grosberg, Evolution and Ecology, (530) 752-1114,
Andy Fell, UC Davis News Service, (530) 752-4533,

Andy Fell | EurekAlert!
Further information:

Further reports about: Climate change Ecology Evolution Marine science

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>