Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can evolution outpace climate change?

09.06.2011
Animals and plants may not be able to evolve their way out of the threat posed by climate change, according to a UC Davis study of a tiny seashore animal. The work was published yesterday (June 8) in the journal Proceedings of the Royal Society B.

The tide pool copepod Tigriopus californicus is found from Alaska to Baja California — but in a unique lab study, the animals showed little ability to evolve heat tolerance.

“This is a question a lot of scientists have been talking about,” said study co-author Eric Sanford, an associate professor of evolution and ecology at UC Davis and a researcher at the university’s Bodega Marine Laboratory. “Do organisms have the ability to adapt to climate change on a timescale of decades?”

UC Davis graduate student Morgan Kelly, the first author of the paper, collected copepods from eight locations between Oregon and Baja California in Mexico. The tiny shrimplike animals, about a millimeter long, live in tide pools on rocky outcrops high in the splash zone.

Kelly grew the short-lived copepods in the lab for 10 generations, subjecting them to increased heat stress to select for more heat-tolerant animals.

At the outset, copepods from different locations showed wide variability in heat tolerance. But within those populations, Kelly was able to coax only about a half-degree Celsius (about one degree Fahrenheit) of increased heat tolerance over 10 generations. And in most groups, the increase in heat tolerance had hit a plateau before that point.

In the wild, these copepods can withstand a temperature swing of 20 degrees Celsius a day, Kelly said. But they may be living at the edge of their tolerance, she said.

Although the copepods are widespread geographically, individual populations are very isolated, confined to a single rocky outcrop where wave splash can carry them between pools. That means there is very little flow of new genes across the population as a whole.

“It’s been assumed that widespread species have a lot of genetic capacity to work with, but this study shows that may not be so,” said co-author Rick Grosberg, professor of evolution and ecology at UC Davis. Many other species of animals, birds and plants face stress from climate change, and their habitats have also been fragmented by human activity -- perhaps more than we realize, he said.

“The critical point is that many organisms are already at their environmental limits, and natural selection won’t necessarily rescue them,” Grosberg said.

The study was funded by the National Science Foundation.

Media contact(s):
Morgan Kelly, Evolution and Ecology, mwkelly@ucdavis.edu
Eric Sanford, Bodega Marine Laboratory, (707) 875-2040, edsanford@ucdavis.edu
Rick Grosberg, Evolution and Ecology, (530) 752-1114, rkgrosberg@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: Climate change Ecology Evolution Marine science

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>