Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence on the robustness of metabolic networks

08.09.2008
Biological systems are constantly evolving in ways that increase their fitness for survival amidst environmental fluctuations and internal errors.

Now, in a study of cell metabolism, a Northwestern University research team has found new evidence that evolution has produced cell metabolisms that are especially well suited to handle potentially harmful changes like gene deletions and mutations.

The results, published online this week in the journal PNAS, could be useful in areas where researchers want to manipulate metabolic network structure, such as in bioengineering and medicine, and in the design of robust synthetic networks for use in energy production and distribution networks and in critical infrastructures, such as transportation networks.

The research was led by Julio M. Ottino, dean of the McCormick School of Engineering and Applied Science and Walter P. Murphy Professor of Chemical and Biological Engineering. Other authors of the paper, titled "Cascading failure and robustness in metabolic networks," are Luís A. Nunes Amaral, associate professor of chemical and biological engineering, and lead author Ashley Smart, who recently received his doctoral degree from Northwestern and is now a postdoctoral fellow at the California Institute of Technology.

Cell metabolism is essentially a large network of reactions whose purpose is to convert nutrients into products and energy. Because the network is highly interconnected, it is possible for a single reaction failure (which may be precipitated by a gene deletion or mutation) to initiate a cascade that affects several other reactions in the system. This event could be likened to disturbing a small area of snow that may trigger a large avalanche or the failure of a single transmission line in an electric power grid that may cause a widespread blackout.

By measuring the size of these "cascade" events in simulated metabolic networks, the Northwestern researchers were able to develop a quantitative measure of metabolic robustness: the more robust the network, the less the probability that small disturbances produce large cascades.

They found that the likelihood of large failure cascades in a metabolic network is unusually small, compared to what they would expect from comparable, randomly structured networks.

In other words, these metabolic networks have evolved to be exceptionally robust, adopting organizational structures that help minimize the potentially harmful impacts of gene deletions and mutations. Ottino and his colleagues developed a mathematical model describing the cascading failure phenomenon as a percolation-like process.

The cascading failure model opens up new possibilities for developing math- and statistics-based descriptions of how network structure affects metabolic function in biological systems. The relationship between metabolic structure and function is an important, lingering question for researchers in areas such as bioengineering and disease treatment in medicine, where one goal is to manipulate metabolic network structure in order to obtain desired behaviors.

The Northwestern team concludes it is possible that nature, in this case, is the best teacher: improved understanding of how cell metabolisms have evolved to handle failure cascades may provide clues as to how one might design synthetic networks for similar robustness.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu
http://www.pnas.org/content/early/2008/09/02/0803571105.abstract

Further reports about: CASCADE Mutation metabolic metabolism reaction robustness structure

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>