Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence on the robustness of metabolic networks

08.09.2008
Biological systems are constantly evolving in ways that increase their fitness for survival amidst environmental fluctuations and internal errors.

Now, in a study of cell metabolism, a Northwestern University research team has found new evidence that evolution has produced cell metabolisms that are especially well suited to handle potentially harmful changes like gene deletions and mutations.

The results, published online this week in the journal PNAS, could be useful in areas where researchers want to manipulate metabolic network structure, such as in bioengineering and medicine, and in the design of robust synthetic networks for use in energy production and distribution networks and in critical infrastructures, such as transportation networks.

The research was led by Julio M. Ottino, dean of the McCormick School of Engineering and Applied Science and Walter P. Murphy Professor of Chemical and Biological Engineering. Other authors of the paper, titled "Cascading failure and robustness in metabolic networks," are Luís A. Nunes Amaral, associate professor of chemical and biological engineering, and lead author Ashley Smart, who recently received his doctoral degree from Northwestern and is now a postdoctoral fellow at the California Institute of Technology.

Cell metabolism is essentially a large network of reactions whose purpose is to convert nutrients into products and energy. Because the network is highly interconnected, it is possible for a single reaction failure (which may be precipitated by a gene deletion or mutation) to initiate a cascade that affects several other reactions in the system. This event could be likened to disturbing a small area of snow that may trigger a large avalanche or the failure of a single transmission line in an electric power grid that may cause a widespread blackout.

By measuring the size of these "cascade" events in simulated metabolic networks, the Northwestern researchers were able to develop a quantitative measure of metabolic robustness: the more robust the network, the less the probability that small disturbances produce large cascades.

They found that the likelihood of large failure cascades in a metabolic network is unusually small, compared to what they would expect from comparable, randomly structured networks.

In other words, these metabolic networks have evolved to be exceptionally robust, adopting organizational structures that help minimize the potentially harmful impacts of gene deletions and mutations. Ottino and his colleagues developed a mathematical model describing the cascading failure phenomenon as a percolation-like process.

The cascading failure model opens up new possibilities for developing math- and statistics-based descriptions of how network structure affects metabolic function in biological systems. The relationship between metabolic structure and function is an important, lingering question for researchers in areas such as bioengineering and disease treatment in medicine, where one goal is to manipulate metabolic network structure in order to obtain desired behaviors.

The Northwestern team concludes it is possible that nature, in this case, is the best teacher: improved understanding of how cell metabolisms have evolved to handle failure cascades may provide clues as to how one might design synthetic networks for similar robustness.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu
http://www.pnas.org/content/early/2008/09/02/0803571105.abstract

Further reports about: CASCADE Mutation metabolic metabolism reaction robustness structure

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>