Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Every grain of sand is a metropolis for bacteria

04.12.2017

A single sand grain harbours up to 100,000 microorganisms from thousands of species.

Just imagine, you are sitting on a sunny beach, contentedly letting the warm sand trickle through your fingers. Millions of sand grains. What you probably can't imagine: at the same time, billions upon billions of bacteria are also trickling through your fingers.


View of a sand grain under a fluorescence microscope: The green spots are stained bacteria, which have mainly colonized depressions on the grain.

Max Planck Institute for Marine Microbiology/CC-SA BY 4.0


Hard to believe what lives here: Sand grains under the binocular microscope.

Max Planck Institute for Marine Microbiology

Between 10,000 and 100,000 microorganisms live on each single grain of sand, as revealed in a study by researchers from the Max Planck Institute for Marine Microbiology in Bremen. This means that an individual grain of sand can have twice as many residents as, say, the city of Fairbanks, Alaska!

Even bacteria hide

It has long been known that sand is a densely populated and active habitat. Now David Probandt and his colleagues have described the microbial community on a single grain of sand using modern molecular methods. To do this, they used samples taken from the southern North Sea, near the island of Heligoland, off the German coast.

The bacteria do not colonize the sand grains uniformly. While exposed areas are practically uncolonized, the bacteria bustle in cracks and depressions. “They are well protected there”, explains Probandt. “When water flows around the grains of sand and they are swirled around, rubbing against each other, the bacteria are safe within these depressions.” These sites may also act as hiding grounds from predators, who comb the surface of the sand grains in search of food.

Impressive diversity

However, the diversity of the bacteria, and not just their numbers, is impressive. “We found thousands of different species of bacteria on each individual grain of sand”, says Probandt.

Some bacteria species and groups can be found on all investigated sand grains, others only here and there. “More than half of the inhabitants on all grains are the same. We assume that this core community on all sand grains displays a similar function”, explains Probandt. “In principle, each grain has the same fundamental population and infrastructure.” We can therefore really discover a great deal about the bacterial diversity of sand in general from investigating a single grain of sand.

Sandy coasts are enormous filters

Sand-dwelling bacteria play an important role in the marine ecosystem and global material cycles. Because these bacteria process, for example, carbon and nitrogen compounds from seawater and fluvial inflows, the sand acts as an enormous purifying filter. Much of what is flushed into the seabed by seawater doesn't come back out.

“Every grain of sand functions like a small bacterial pantry”, explains Probandt. They deliver the necessary supplies to keep the carbon, nitrogen and sulphur cycles running. “Whatever the conditions may be that the bacterial community on a grain of sand is exposed to – thanks to the great diversity of the core community there is always someone to process the substances from the surrounding water.”

Original publication


Probandt, T. Eickhorst, A. Ellrott, R. Amann and Katrin Knittel (2017): Microbial life on a sand grain: from bulk sediment to single grains. The ISME Journal.
DOI:10.1038/ismej.2017.197
Published under CC-SA BY 4.0

Additional information

Probandt, D., Knittel, K., Tegetmeyer, H. E., Ahmerkamp, S., Holtappels, M. and Amann, R. (2017): Permeability shapes bacterial communities in sublittoral surface sediments. Environ Microbiol, 19: 1584–1599. doi:10.1111/1462-2920.13676

Please direct your queries to

David Probandt
Max Planck Institute for Marine Microbiology
Phone: +49 421 2028 940
E-Mail: dprobandt@mpi-bremen.de

Dr. Katrin Knittel
Max Planck Institute for Marine Microbiology
Phone: +49 421 2028 935
E-Mail: kknitel@mpi-bremen.de

or the press office

E-Mail: presse(at)mpi-bremen.de

Dr. Fanni Aspetsberger
Telefon: +49 421 2028 947
Dr. Manfred Schlösser
Phone: +49 421 2028 734

Weitere Informationen:

http://www.mpi-bremen.de
https://www.nature.com/articles/ismej2017197

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>