Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equipment matters - Max Planck Scientists Can Predict which Immune Cells Identify Invaders

24.02.2010
In order to defend ourselves from viruses, germs and parasites, the immune cells of our body are equipped with different defense systems. For the first time, scientists of the Max Planck Institute of Biochemistry and the biotech company Bavarian Nordic GmbH in Martinsried near Munich have now investigated the proteins of a highly specialized family of immune cells.

"To our surprise, we discovered that not all the members of the dendritic cell family are able to detect pathogens such as viruses", explains Christian A. Luber, scientist at the MPI of Biochemistry. "We could predict this behavior only on the basis of their protein equipment." The work has now been published in Immunity.

The immune system is a complex system consisting of many different cell types. In order to fight invaders successfully, it is necessary to coordinate all these cells carefully. The decision about which cell type is used for which infection and in which way, is made by a highly specialized family of immune cells: the dendritic cells.

Like cellular police officers, dendritic cells sit in tissues such as the skin, waiting for invaders. When they encounter one of these, they absorb all the information about the invader. Afterwards, they move towards the lymph nodes, where they present the information like a mug shot to other defense cells. Then, the directed immune response can begin. "Dendritic cells are so to speak cells of a general's rank that indicate to other troops the direction for combating an infection", illustrates Christian A. Luber. "It is because of this leading role, they are so interesting for us."

Until now, scientists have supposed that each dendritic cell is able to detect viruses. But the results of the Research Department Proteomics and Signal Transduction, headed by Matthias Mann, show that only specific members of the dendritic cell family possess the essential protein equipment for viral sensing.

In collaboration with the Bavarian Nordic GmbH, this result could be confirmed. The scientists infected dendritic cells with various viruses, including influenza viruses, and observed that one specific member of the dendritic cell family did not show any reaction. It does not have the proteins which are necessary to identify the virus. "It has already been known for some time that dendritic cells are aware of such a thing as division of labor. We were very surprised that this also applies to something as fundamental as the detection of influenza viruses", says Christian A. Luber. "Our results could help to understand the complex mechanisms of the immune system even better."

Original Publication:
C. A. Luber, J. Cox, H. Lauterbach, B. Fancke, M. Selbach, J.Tschopp, S. Akira, M. Wiegand, H. Hochrein, M. O'Keeffe, M. Mann: Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity, February 18, 2010.
Contact:
Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mmann@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/news/index.html
http://www.biochem.mpg.de/en/rd/mann/index.html

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>