Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equipment matters - Max Planck Scientists Can Predict which Immune Cells Identify Invaders

24.02.2010
In order to defend ourselves from viruses, germs and parasites, the immune cells of our body are equipped with different defense systems. For the first time, scientists of the Max Planck Institute of Biochemistry and the biotech company Bavarian Nordic GmbH in Martinsried near Munich have now investigated the proteins of a highly specialized family of immune cells.

"To our surprise, we discovered that not all the members of the dendritic cell family are able to detect pathogens such as viruses", explains Christian A. Luber, scientist at the MPI of Biochemistry. "We could predict this behavior only on the basis of their protein equipment." The work has now been published in Immunity.

The immune system is a complex system consisting of many different cell types. In order to fight invaders successfully, it is necessary to coordinate all these cells carefully. The decision about which cell type is used for which infection and in which way, is made by a highly specialized family of immune cells: the dendritic cells.

Like cellular police officers, dendritic cells sit in tissues such as the skin, waiting for invaders. When they encounter one of these, they absorb all the information about the invader. Afterwards, they move towards the lymph nodes, where they present the information like a mug shot to other defense cells. Then, the directed immune response can begin. "Dendritic cells are so to speak cells of a general's rank that indicate to other troops the direction for combating an infection", illustrates Christian A. Luber. "It is because of this leading role, they are so interesting for us."

Until now, scientists have supposed that each dendritic cell is able to detect viruses. But the results of the Research Department Proteomics and Signal Transduction, headed by Matthias Mann, show that only specific members of the dendritic cell family possess the essential protein equipment for viral sensing.

In collaboration with the Bavarian Nordic GmbH, this result could be confirmed. The scientists infected dendritic cells with various viruses, including influenza viruses, and observed that one specific member of the dendritic cell family did not show any reaction. It does not have the proteins which are necessary to identify the virus. "It has already been known for some time that dendritic cells are aware of such a thing as division of labor. We were very surprised that this also applies to something as fundamental as the detection of influenza viruses", says Christian A. Luber. "Our results could help to understand the complex mechanisms of the immune system even better."

Original Publication:
C. A. Luber, J. Cox, H. Lauterbach, B. Fancke, M. Selbach, J.Tschopp, S. Akira, M. Wiegand, H. Hochrein, M. O'Keeffe, M. Mann: Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity, February 18, 2010.
Contact:
Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mmann@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/news/index.html
http://www.biochem.mpg.de/en/rd/mann/index.html

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>