Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equipment matters - Max Planck Scientists Can Predict which Immune Cells Identify Invaders

24.02.2010
In order to defend ourselves from viruses, germs and parasites, the immune cells of our body are equipped with different defense systems. For the first time, scientists of the Max Planck Institute of Biochemistry and the biotech company Bavarian Nordic GmbH in Martinsried near Munich have now investigated the proteins of a highly specialized family of immune cells.

"To our surprise, we discovered that not all the members of the dendritic cell family are able to detect pathogens such as viruses", explains Christian A. Luber, scientist at the MPI of Biochemistry. "We could predict this behavior only on the basis of their protein equipment." The work has now been published in Immunity.

The immune system is a complex system consisting of many different cell types. In order to fight invaders successfully, it is necessary to coordinate all these cells carefully. The decision about which cell type is used for which infection and in which way, is made by a highly specialized family of immune cells: the dendritic cells.

Like cellular police officers, dendritic cells sit in tissues such as the skin, waiting for invaders. When they encounter one of these, they absorb all the information about the invader. Afterwards, they move towards the lymph nodes, where they present the information like a mug shot to other defense cells. Then, the directed immune response can begin. "Dendritic cells are so to speak cells of a general's rank that indicate to other troops the direction for combating an infection", illustrates Christian A. Luber. "It is because of this leading role, they are so interesting for us."

Until now, scientists have supposed that each dendritic cell is able to detect viruses. But the results of the Research Department Proteomics and Signal Transduction, headed by Matthias Mann, show that only specific members of the dendritic cell family possess the essential protein equipment for viral sensing.

In collaboration with the Bavarian Nordic GmbH, this result could be confirmed. The scientists infected dendritic cells with various viruses, including influenza viruses, and observed that one specific member of the dendritic cell family did not show any reaction. It does not have the proteins which are necessary to identify the virus. "It has already been known for some time that dendritic cells are aware of such a thing as division of labor. We were very surprised that this also applies to something as fundamental as the detection of influenza viruses", says Christian A. Luber. "Our results could help to understand the complex mechanisms of the immune system even better."

Original Publication:
C. A. Luber, J. Cox, H. Lauterbach, B. Fancke, M. Selbach, J.Tschopp, S. Akira, M. Wiegand, H. Hochrein, M. O'Keeffe, M. Mann: Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity, February 18, 2010.
Contact:
Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mmann@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/news/index.html
http://www.biochem.mpg.de/en/rd/mann/index.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>