Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced NIST instrument enables high-speed chemical imaging of tissues

23.07.2014

A research team from the National Institute of Standards and Technology (NIST), working with the Cleveland Clinic, has demonstrated a dramatically improved technique for analyzing biological cells and tissues based on characteristic molecular vibration "signatures."

The new NIST technique is an advanced form of the widely used spontaneous Raman spectroscopy, but one that delivers signals that are 10,000 times stronger than obtained from spontaneous Raman scattering, and 100 times stronger than obtained from comparable "coherent Raman" instruments, and uses a much larger portion of the vibrational spectrum of interest to cell biologists.*


High-speed BCARS allows detailed mapping of specific components of tissue samples. A false-color BCARS image of mouse liver tissue (left) picks out cell nuclei in blue, collagen in orange and proteins in green. An image of tumor and normal brain tissue from a mouse (right) has been colored to show cell nuclei in blue, lipids in red and red blood cells in green. Images show an area about 200 micrometers across.

Credit: Camp/NIST

The technique, a version of "broadband, coherent anti-Stokes Raman scattering" (BCARS), is fast and accurate enough to enable researchers to create high-resolution images of biological specimens, containing detailed spatial information on the specific biomolecules present at speeds fast enough to observe changes and movement in living cells, according to the NIST team.

Raman spectroscopy is based on a subtle interplay between light and molecules. Molecules have characteristic vibration frequencies associated with their atoms flexing and stretching the molecular bonds that hold them together. Under the right conditions, a photon interacting with the molecule will absorb some of this energy from a particular vibration and emerge with its frequency shifted by that frequency—this is "anti-Stokes scattering."

Recording enough of these energy-enhanced photons reveals a characteristic spectrum unique to the molecule. This is great for biology because in principle it can identify and distinguish between many complex biomolecules without destroying them and, unlike many other techniques, does not alter the specimen with stains or fluorescent or radioactive tags.

Using this intrinsic spectral information to map specific kinds of biomolecules in an image is potentially very powerful, but the signal levels are very faint, so researchers have worked for years to develop enhanced methods for gathering these spectra.** "Coherent" Raman methods use specially tuned lasers to both excite the molecular vibrations and provide a bright source of probe photons to read the vibrations. This has partially solved the problem, but the coherent Raman methods developed to date have had limited ability to access most of the available spectroscopic information.

Most current coherent Raman methods obtain useful signal only in a spectral region containing approximately five peaks with information about carbon-hydrogen and oxygen-hydrogen bonds. The improved method described by the NIST team not only accesses this spectral region, but also obtains excellent signal from the "fingerprint" spectral region, which has approximately 50 peaks—most of the useful molecular ID information.

The NIST instrument is able to obtain enhanced signal largely by using excitation light efficiently. Conventional coherent Raman instruments must tune two separate laser frequencies to excite and read different Raman vibration modes in the sample. The NIST instrument uses ultrashort laser pulses to simultaneously excite all vibrational modes of interest. This "intrapulse" excitation is extremely efficient and produces its strongest signals in the fingerprint region. "Too much light will destroy cells," explains NIST chemist Marcus Cicerone, "So we've engineered a very efficient way of generating our signal with limited amounts of light. We've been more efficient, but also more efficient where it counts, in the fingerprint region."

Raman hyperspectral images are built up by obtaining spectra, one spatial pixel at a time. The hundred-fold improvement in signal strength for the NIST BCARS instrument makes it possible to collect individual spectral data much faster and at much higher quality than before—a few milliseconds per pixel for a high-quality spectrum versus tens of milliseconds for a marginal quality spectrum with other coherent Raman spectroscopies, or even seconds for a spectrum from more conventional spontaneous Raman instruments. Because it's capable of registering many more spectral peaks in the fingerprint region, each pixel carries a wealth of data about the biomolecules present. This translates to high-resolution imaging within a minute or so whereas, notes NIST electrical engineer Charles Camp, Jr., "It's not uncommon to take 36 hours to get a low-resolution image in spontaneous Raman spectroscopy."

"There are a number of firsts in this paper for Raman spectroscopy," Camp adds. "Among other things we show detailed images of collagen and elastin—not normally identified with coherent Raman techniques—and multiple peaks attributed to different bonds and states of nucleotides that show the presence of DNA or RNA."

###

*C.H. Camp Jr., Y.J. Lee, J.M. Heddleston, C.M. Hartshorn, A.R. Hight Walker, J.N. Rich, J.D. Lathia and M.T. Cicerone. High-speed coherent Raman fingerprint imaging of biological tissues. Nature Photonics, Published online July 20, 2014. doi:10.1038/nphoton.2014.145.

**See for example the 2010 Tech Beat story, "Faster CARS, Less Damage: NIST Chemical Microscopy Shows Potential for Cell Diagnostics" at http://www.nist.gov/public_affairs/tech-beat/tb20101013.cfm#cars.

Michael Baum | Eurek Alert!

Further reports about: Cicerone NIST Raman biomolecules characteristic photons spatial spectroscopy spectrum technique

More articles from Life Sciences:

nachricht New Technique Maps Elusive Chemical Markers on Proteins
03.07.2015 | Salk Institute for Biological Studies

nachricht New approach to targeted cancer therapy
03.07.2015 | CECAD - Cluster of Excellence at the University of Cologne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>