Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers probe mechanics behind rapid-aging disease

15.09.2011
Pulling the tail of mutated protein could help illuminate problems with misfolding

Researchers at MIT and Carnegie Mellon University are using both civil engineering and bioengineering approaches to study the behavior of a protein associated with progeria, a rare disorder in children that causes extremely rapid aging and usually ends in death from cardiovascular disease before age 16. The disease is marked by the deletion of 50 amino acids near the end of the lamin A protein, which helps support a cell's nuclear membrane.

At MIT, the researchers used molecular modeling — which obeys the laws of physics at the molecular scale — to simulate the behavior of the protein's tail under stress in much the same way a traditional civil engineer might test the strength of a beam: by applying pressure. In this instance, they created exact replicas of healthy and mutated lamin A protein tails, pulling on them to see how they unraveled.

"The application of engineering mechanics to understand the process of rapid aging disease may seem odd, but it actually makes a lot of sense," says Markus Buehler, a professor in MIT's Department of Civil and Environmental Engineering who also studies structural proteins found in bone and collagen. In this new research, he worked with Kris Dahl, professor of biomedical engineering and chemical engineering at Carnegie Mellon, and graduate students Zhao Qin of MIT and Agnieszka Kalinowski of Carnegie Mellon. They published their findings in the September issue of the Journal of Structural Biology.

In its natural state, a protein — and its tail — exist in complex folded configurations that differ for each protein type. Many misfolded proteins are associated with diseases. In molecular simulations, Qin and Buehler found that the healthy lamin A protein tail unravels sequentially along its backbone strand, one amino acid at a time.

"It behaved much as if I pulled on a loose thread on my shirt cuff and watched it pull out stitch by stitch," said Qin.

By contrast, the mutant protein tail, when pulled, first breaks nearly in half, forming a large gap near the middle of its folded structure, then begins unfolding sequentially. The MIT scientists deduced that it takes an additional 70 kilocalories per mole (a unit of energy) to straighten the mutant tails, meaning the mutant protein is actually more stable than its healthy counterpart.

At Carnegie Mellon, Dahl and Kalinowski studied the same topic by subjecting lamin A protein tails to heat, which causes proteins to denature or unfold. In their lab, they observed the same pattern of unraveling in healthy and mutated proteins as the MIT engineers did in their atomistic simulation.

Qin then wrote a mathematical equation to convert the temperature differential seen in denaturing the mutant and healthy proteins (4.7 degrees Fahrenheit) to the unit of energy found in the atomistic simulations, finding that the increase in temperature very nearly matched the increase in energy. This agreement, the researchers say, validates the application of the civil engineering methodology to the study of the mutated protein in diseased cells.

The results, however, were counterintuitive to the civil engineers, who are accustomed to flawed materials being weaker — not stronger — than their unimpaired counterparts.

As a component of the cell's nucleoskeleton, lamin A plays an important role in defining the mechanical properties of a cell's nuclear membrane, which must remain flexible enough to easily withstand deformation. In previous work, Dahl had observed that nuclear membranes built from the mutated proteins become very stiff and brittle, which could explain the altered protein-DNA and protein-protein interactions observed in diseased cells.

"Our surprising finding is that the defective mutant structure is actually more stable and more densely packed than the healthy protein," said Buehler. "This is contrary to our intuition that a 'defective' structure is less stable and breaks more easily, which is what engineers would expect in building materials. However, the mechanics of proteins is governed by the principles of nanomechanics, which can be distinct from our conventional understanding of materials at the macro scale."

Marta Buczek | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: amino acid civil engineering diseased cells mutated protein

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>