Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Create Bone that Blends into Tendons

03.09.2008
Engineers at Georgia Tech have used skin cells to create artificial bones that mimic the ability of natural bone to blend into other tissues such as tendons or ligaments.

The artificial bones display a gradual change from bone to softer tissue rather than the sudden shift of previously developed artificial tissue, providing better integration with the body and allowing them to handle weight more successfully. The research appears in the August 26, 2008, edition of the Proceedings of the National Academy of Sciences.

“One of the biggest challenges in regenerative medicine is to have a graded continuous interface, because anatomically that’s how the majority of tissues appear and there are studies that strongly suggest that the graded interface provides better integration and load transfer,” said Andres Garcia, professor in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology.

Garcia and former graduate student Jennifer Phillips, along with research technician Kellie Burns and their collaborators Joseph Le Doux and Robert Guldberg, were not only able to create artificial bone that melds into softer tissues, but were also able to implant the technology in vivo for several weeks.

They created the tissue by coating a three-dimensional polymer scaffold with a gene delivery vehicle that encodes a transcription factor known as Runx2. They generated a high concentration of Runx2 at one end of the scaffold and decreased that amount until they ended up with no transcription factor on the other end, resulting in a precisely controlled spatial gradient of Runx2. After that, they seeded skin fibroblasts uniformly onto the scaffold. The skin cells on the parts of the scaffold containing a high concentration of Runx2 turned into bone, while the skin cells on the scaffold end with no Runx2 turned into soft tissue. The result is an artificial bone that gradually turns into soft tissue, such as tendons or ligaments.

If the technology is able to pass further testing, one application could be anterior cruciate ligament (ACL) surgery. Oftentimes, ACL surgery fails at the point where the ligament meets the bone. But if an artificial bone/ligament construct with these types of graded transitions were implanted, it might lead to more successful outcomes for patients.

“Every organ in our body is made up of complex, heterogeneous structures, so the ability to engineer tissues that more closely mimic these natural architectures is a critical challenge for the next wave of tissue engineering,” said Phillips, who is now working at Emory University as a postdoctoral research fellow in developmental biology.

Now that they have been able to demonstrate that they can implant the tissue in vivo for several weeks, the team’s next step is to show that the tissue can handle weight for an even longer period of time.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>