Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineering a Photo-Switch for Nerve Cells in the Eye and Brain

Chemists and vision scientists at the University of Illinois at Chicago have designed a light-sensitive molecule that can stimulate a neural response in cells of the retina and brain -- a possible first step to overcoming degenerative eye diseases like age-related macular degeneration, or to quieting epileptic seizures.

Their results are reported online in the journal Nature Communications.

Macular degeneration, the leading cause of vision loss in people over 50, is caused by loss of light-sensitive cells in the retina -- the rods and cones.

"The rods and cones, which absorb light and initiate visual signals, are the broken link in the chain, even though what we call the 'inner cells' of the retina, in many cases, are still potentially capable of function," says David Pepperberg, professor of ophthalmology and visual sciences in the UIC College of Medicine, the principal investigator on the study.

"Our approach is to bypass the lost rods and cones, by making the inner cells responsive to light."

Pepperberg and his colleagues are trying to develop light-sensitive molecules that -- when injected into the eye -- can find their way to inner retinal cells, attach themselves, and initiate the signal that is sent to the brain.

The researchers synthesized new compounds built upon the well-known anesthetic agent propofol, a small molecule that binds to a receptor-protein on nerve cells. The receptor is ordinarily activated by the neurotransmitter GABA, and when so activated it opens a channel in the membrane of the cell to initiate a signal that propagates to other nerve cells.

Chemists led by Karol Bruzik, professor of medicinal chemistry and pharmacognosy in the UIC College of Pharmacy, succeeded in adding-on a light-sensitive chemical component to the propofol molecule. When struck by light of different wavelengths, the molecule changes shape and functions as a light-triggered, on-off switch for these receptors.

The research team tested the new compound, code name MPC088, in three different types of cells: retinal ganglion cells, the nerve cells that send visual signals from the retina to the brain via the optic nerve; Purkinje neurons from the cerebellum; and non-nerve cells that were specially engineered to produce and install the GABA receptor in their membrane.

MPC088 binds to the receptor and makes it far more responsive to GABA. Light of appropriate wavelengths converts the MPC088 to an inactive form and back again, reducing and then restoring the high sensitivity to GABA, which opens the membrane channel to initiate the neural signal.

"Putting it all together, we have a compound that dramatically regulates, in light-dependent fashion, the GABA receptors of both an engineered receptor system and native receptors of retinal ganglion cells and brain neurons," Pepperberg said.

The experiments on the Purkinje neurons of the cerebellum, conducted in collaboration with neurobiologist Thomas Otis at the University of California at Los Angeles, "showed we were able to go beyond visual systems," Pepperberg said, and demonstrate that "photo-regulation may also have potential as a therapeutic for epilepsy, a class of diseases that involves abnormal excitatory activity in the brain."

Epileptic seizures begin in a defined region of the brain, and it may become possible to introduce a photo-switching compound and a very thin light-guide into this region, Pepperberg said.

"Because GABA receptors are typically inhibitory, introducing light of the appropriate wavelength into the region as the seizure begins and activating the GABA receptors could have the effect of turning off the seizure."

The researchers also created a molecular switch related to MPC088 that can permanently anchor a genetically engineered GABA receptor, demonstrating the possibility that a light-sensitive molecule could be introduced into the eye or brain to modify GABA receptors and act as a photo-switch.

"Our work opens up new avenues for not only the retinal application but also diseases of the central nervous system where a dysfunction or deficiency of GABA activity is a key problem," Pepperberg said.

Co-first authors on the paper were UIC bioengineering graduate student Lan Yue, UIC medicinal chemistry and pharmacognosy postdoctoral researcher Michal Pawlowski, and UCLA postdoctoral researcher Shlomo Dellal. Other authors were An Xie, Feng Feng, and Haohua Qian from the UIC department of ophthalmology and visual sciences.

This study was supported by National Institutes of Health grants EY016094, EY001792 and AA01973; the Daniel F. and Ada L. Rice Foundation; Hope for Vision; the Beckman Institute for Macular Research; the American Health Assistance Foundation; Research to Prevent Blindness; and UIC Center for Clinical and Translational Science award UL1RR029879.

[Editors note: images available at]

Jeanne Galatzer-Levy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>