Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered Tobacco Plants Have More Potential as a Biofuel

06.01.2010
Researchers from the Biotechnology Foundation Laboratories at Thomas Jefferson University have identified a way to increase the oil in tobacco plant leaves, which may be the next step in using the plants for biofuel. Their paper was published online in Plant Biotechnology Journal.

According to Vyacheslav Andrianov, Ph.D., assistant professor of Cancer Biology at Jefferson Medical College of Thomas Jefferson University, tobacco can generate biofuel more efficiently than other agricultural crops. However, most of the oil is typically found in the seeds – tobacco seeds are composed of about 40 percent oil per dry weight.

Although the seed oil has been tested for use as fuel for diesel engines, tobacco plants yield a modest amount of seeds, at only about 600 kg of seeds per acre. Dr. Andrianov and his colleagues sought to find ways to engineer tobacco plants, so that their leaves expressed the oil.

“Tobacco is very attractive as a biofuel because the idea is to use plants that aren’t used in food production,” Dr. Andrianov said. “We have found ways to genetically engineer the plants so that their leaves express more oil. In some instances, the modified plants produced 20-fold more oil in the leaves.”

Typical tobacco plant leaves contain 1.7 percent to 4 percent of oil per dry weight. The plants were engineered to overexpress one of two genes: the diacyglycerol acytransferase (DGAT) gene or the LEAFY COTYLEDON 2 (LEC2) gene. The DGAT gene modification led to about 5.8 percent of oil per dry weight in the leaves, which about two-fold the amount of oil produced normally. The LEC2 gene modification led to 6.8 percent of oil per dry weight.

“Based on these data, tobacco represents an attractive and promising ‘energy plant’ platform, and could also serve as a model for the utilization of other high-biomass plants for biofuel production,” Dr. Andrianov said.

The paper was co-authored by Dr. Andrianov and Nikolai Borisjuk, Ph.D., also from the Jefferson Biotechnology Foundation Laboratories. Hilary Koprowski, M.D., is the director of the Jefferson Biotechnology Foundation Laboratories, and also participated in the research.

Emily Shafer | Newswise Science News
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>