Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-saving bacteria resist antibiotics

03.09.2008
Bacteria save energy by producing proteins that moonlight, having different roles at different times, which may also protect the microbes from being killed.

The moonlighting activity of one enzyme from the tuberculosis bacterium makes it partially resistant to a family of broad-spectrum antibiotics, according to a paper published in the September issue of the journal Microbiology.

"Glutamate racemase, or MurI, is an enzyme that bacteria use to make the building blocks of cell walls," said Professor Valakunja Nagaraja from the Indian Institute of Science in Bangalore, India. "MurI from Mycobacterium tuberculosis also stops the enzyme DNA gyrase from working, which in turn stops DNA replication and cell division."

The researchers found that the two different functions work independently of one another - the enzyme's ability to make cell wall components does not affect its ability to inhibit DNA gyrase and vice versa.

DNA gyrase is involved in DNA replication, which happens when bacteria reproduce. A family of antibiotics called fluoroquinolones target this enzyme, killing the bacteria that cause infections such as cholera, anthrax, gonorrhoea, meningitis, E. coli and MRSA. The researchers found that when MurI binds to DNA gyrase, it takes gyrase away from substrate DNA. Because of this, antibiotics cannot bind and stop it from working, so the bacteria become resistant to treatment.

"Our findings suggest that MurI has a role in safeguarding DNA gyrase from attack by antibiotics," said Professor Nagaraja. "The moonlighting activity of MurI seems to have evolved more recently to protect and control DNA gyrase."

MurI is not alone in its moonlighting activities; other bacterial enzymes and proteins also carry out different functions. But why has this ability evolved? "Multifunctional proteins are mostly common enzymes that have acquired different roles over the long period of their existence," said Professor Nagaraja. "As long as these additional roles do not interfere with the original function of the protein, they could benefit the cell by providing a competitive advantage during evolution."

By having multifunctional enzymes, a cell has fewer proteins to build, therefore less DNA to replicate. This means they save a great deal of energy in growth and reproduction. Moonlighting proteins can also control cellular activities, such as DNA replication in the case of MurI.

"An alarming increase in the emergence of multi-drug resistant strains of M. tuberculosis has led to an active search for novel drug targets," said Professor Nagaraja. "Our results may help us to discover molecules to target MurI, to prevent bacteria from making cell walls and develop a successful treatment for a wide range of bacterial infections."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>