Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-saving bacteria resist antibiotics

03.09.2008
Bacteria save energy by producing proteins that moonlight, having different roles at different times, which may also protect the microbes from being killed.

The moonlighting activity of one enzyme from the tuberculosis bacterium makes it partially resistant to a family of broad-spectrum antibiotics, according to a paper published in the September issue of the journal Microbiology.

"Glutamate racemase, or MurI, is an enzyme that bacteria use to make the building blocks of cell walls," said Professor Valakunja Nagaraja from the Indian Institute of Science in Bangalore, India. "MurI from Mycobacterium tuberculosis also stops the enzyme DNA gyrase from working, which in turn stops DNA replication and cell division."

The researchers found that the two different functions work independently of one another - the enzyme's ability to make cell wall components does not affect its ability to inhibit DNA gyrase and vice versa.

DNA gyrase is involved in DNA replication, which happens when bacteria reproduce. A family of antibiotics called fluoroquinolones target this enzyme, killing the bacteria that cause infections such as cholera, anthrax, gonorrhoea, meningitis, E. coli and MRSA. The researchers found that when MurI binds to DNA gyrase, it takes gyrase away from substrate DNA. Because of this, antibiotics cannot bind and stop it from working, so the bacteria become resistant to treatment.

"Our findings suggest that MurI has a role in safeguarding DNA gyrase from attack by antibiotics," said Professor Nagaraja. "The moonlighting activity of MurI seems to have evolved more recently to protect and control DNA gyrase."

MurI is not alone in its moonlighting activities; other bacterial enzymes and proteins also carry out different functions. But why has this ability evolved? "Multifunctional proteins are mostly common enzymes that have acquired different roles over the long period of their existence," said Professor Nagaraja. "As long as these additional roles do not interfere with the original function of the protein, they could benefit the cell by providing a competitive advantage during evolution."

By having multifunctional enzymes, a cell has fewer proteins to build, therefore less DNA to replicate. This means they save a great deal of energy in growth and reproduction. Moonlighting proteins can also control cellular activities, such as DNA replication in the case of MurI.

"An alarming increase in the emergence of multi-drug resistant strains of M. tuberculosis has led to an active search for novel drug targets," said Professor Nagaraja. "Our results may help us to discover molecules to target MurI, to prevent bacteria from making cell walls and develop a successful treatment for a wide range of bacterial infections."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>