Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-saving bacteria resist antibiotics

03.09.2008
Bacteria save energy by producing proteins that moonlight, having different roles at different times, which may also protect the microbes from being killed.

The moonlighting activity of one enzyme from the tuberculosis bacterium makes it partially resistant to a family of broad-spectrum antibiotics, according to a paper published in the September issue of the journal Microbiology.

"Glutamate racemase, or MurI, is an enzyme that bacteria use to make the building blocks of cell walls," said Professor Valakunja Nagaraja from the Indian Institute of Science in Bangalore, India. "MurI from Mycobacterium tuberculosis also stops the enzyme DNA gyrase from working, which in turn stops DNA replication and cell division."

The researchers found that the two different functions work independently of one another - the enzyme's ability to make cell wall components does not affect its ability to inhibit DNA gyrase and vice versa.

DNA gyrase is involved in DNA replication, which happens when bacteria reproduce. A family of antibiotics called fluoroquinolones target this enzyme, killing the bacteria that cause infections such as cholera, anthrax, gonorrhoea, meningitis, E. coli and MRSA. The researchers found that when MurI binds to DNA gyrase, it takes gyrase away from substrate DNA. Because of this, antibiotics cannot bind and stop it from working, so the bacteria become resistant to treatment.

"Our findings suggest that MurI has a role in safeguarding DNA gyrase from attack by antibiotics," said Professor Nagaraja. "The moonlighting activity of MurI seems to have evolved more recently to protect and control DNA gyrase."

MurI is not alone in its moonlighting activities; other bacterial enzymes and proteins also carry out different functions. But why has this ability evolved? "Multifunctional proteins are mostly common enzymes that have acquired different roles over the long period of their existence," said Professor Nagaraja. "As long as these additional roles do not interfere with the original function of the protein, they could benefit the cell by providing a competitive advantage during evolution."

By having multifunctional enzymes, a cell has fewer proteins to build, therefore less DNA to replicate. This means they save a great deal of energy in growth and reproduction. Moonlighting proteins can also control cellular activities, such as DNA replication in the case of MurI.

"An alarming increase in the emergence of multi-drug resistant strains of M. tuberculosis has led to an active search for novel drug targets," said Professor Nagaraja. "Our results may help us to discover molecules to target MurI, to prevent bacteria from making cell walls and develop a successful treatment for a wide range of bacterial infections."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>