Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic development—lost in space?

16.11.2009
Experiments simulating zero-gravity conditions reveal developmental difficulties arising from mammalian reproduction in space

Despite other challenges, biological difficulties may be the primary obstacle to successful mammalian reproduction and development in orbit, according to new findings by Teruhiko Wakayama and his colleagues at the RIKEN Center for Developmental Biology in Kobe.

Wakayama’s research is primarily focused on cloning, but he has long sustained an interest in outer space. “I took the exam to be an astronaut more than ten years ago,” he says. Although his career ultimately followed a more earthbound path, an encounter with scientists working in space research provided the opportunity to tackle a long-standing question pertaining to life in outer space: can mammals reproduce successfully in zero-gravity?

Previous studies have demonstrated successful reproduction by fish, amphibians and birds in zero-gravity conditions (also called microgravity), and that already pregnant rats can deliver healthy offspring aboard a space shuttle. On the other hand, experiments from a 1979 mission indicated that rats can get impregnated in space, but are seemingly incapable of bringing these pregnancies to term—although it was unclear at which stage complications arose1.

Now, thanks to an apparatus known as a 3D clinostat, which simulates microgravity via continuous three-dimensional rotation, Wakayama and colleagues were able to study fertilization and the earliest stages of embryonic development under conditions that replicate space travel2.

They performed in vitro fertilization (IVF) experiments with mouse sperm and ova, both within the clinostat and at regular gravity (1G), and determine that microgravity had minimal effects on fertilization. It may prove detrimental to subsequent development, however. Microgravity-cultured embryos successfully reached the two-cell stage and yielded viable offspring upon implantation into female mice, but at a significantly lower rate than their 1G counterparts. The researchers observed more severe negative effects when embryos were transplanted following longer culture periods in the clinostat.

Microgravity led to an overall reduction in the rate of blastocyst formation after 96 hours of culture, and closer examination of these blastocysts revealed that the differentiation of embryonic cells into trophectoderm—the tissue that nourishes the embryo and ultimately contributes to placenta formation—was markedly impaired.

Given the successful development of non-mammalian embryos in microgravity, these findings were surprising, and Wakayama and colleagues intend to pursue further gravity-manipulation studies to zoom in on the source of the developmental problem. “We are planning to perform similar experiments at different gravities, such as Moon gravity (1/6G) or Mars gravity (1/3G),” he says. “I want to know how much gravity is necessary to perform normal reproduction.”

The corresponding author for this highlight is based at the Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6065

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>