Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic development—lost in space?

16.11.2009
Experiments simulating zero-gravity conditions reveal developmental difficulties arising from mammalian reproduction in space

Despite other challenges, biological difficulties may be the primary obstacle to successful mammalian reproduction and development in orbit, according to new findings by Teruhiko Wakayama and his colleagues at the RIKEN Center for Developmental Biology in Kobe.

Wakayama’s research is primarily focused on cloning, but he has long sustained an interest in outer space. “I took the exam to be an astronaut more than ten years ago,” he says. Although his career ultimately followed a more earthbound path, an encounter with scientists working in space research provided the opportunity to tackle a long-standing question pertaining to life in outer space: can mammals reproduce successfully in zero-gravity?

Previous studies have demonstrated successful reproduction by fish, amphibians and birds in zero-gravity conditions (also called microgravity), and that already pregnant rats can deliver healthy offspring aboard a space shuttle. On the other hand, experiments from a 1979 mission indicated that rats can get impregnated in space, but are seemingly incapable of bringing these pregnancies to term—although it was unclear at which stage complications arose1.

Now, thanks to an apparatus known as a 3D clinostat, which simulates microgravity via continuous three-dimensional rotation, Wakayama and colleagues were able to study fertilization and the earliest stages of embryonic development under conditions that replicate space travel2.

They performed in vitro fertilization (IVF) experiments with mouse sperm and ova, both within the clinostat and at regular gravity (1G), and determine that microgravity had minimal effects on fertilization. It may prove detrimental to subsequent development, however. Microgravity-cultured embryos successfully reached the two-cell stage and yielded viable offspring upon implantation into female mice, but at a significantly lower rate than their 1G counterparts. The researchers observed more severe negative effects when embryos were transplanted following longer culture periods in the clinostat.

Microgravity led to an overall reduction in the rate of blastocyst formation after 96 hours of culture, and closer examination of these blastocysts revealed that the differentiation of embryonic cells into trophectoderm—the tissue that nourishes the embryo and ultimately contributes to placenta formation—was markedly impaired.

Given the successful development of non-mammalian embryos in microgravity, these findings were surprising, and Wakayama and colleagues intend to pursue further gravity-manipulation studies to zoom in on the source of the developmental problem. “We are planning to perform similar experiments at different gravities, such as Moon gravity (1/6G) or Mars gravity (1/3G),” he says. “I want to know how much gravity is necessary to perform normal reproduction.”

The corresponding author for this highlight is based at the Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6065

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>