Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embracing superficial imperfections

04.07.2011
Numerical simulations reveal that deliberately engineering defects into ultrathin oxide films enhances catalytic water-splitting reactions

Chemists normally work rigorously to exclude impurities from their reactions. This is especially true for scanning tunneling microscopy (STM) experiments that can produce atomic-scale images of surfaces. Using STM to investigate processes such as catalysis usually requires pristine substrates—any flaws or foreign particles in the surface can critically interfere with the test study.

Preconceptions about interface defects and catalysis are about to change, however, thanks to recently published research led by Yousoo Kim and Maki Kawai at the RIKEN Advanced Science Institute in Wako.

Through a series of high-level computer simulations, the researchers found that the catalytic splitting of water molecules occurs faster on an ultrathin insulating film containing misplaced atoms than on a non-defective surface. Because water splitting reactions are one of the easiest ways to generate hydrogen fuel, this finding could be a boon to future fleets of hybrid vehicles.

Recently, Kim, Kawai, and colleagues discovered that depositing insulating magnesium oxide (MgO) onto a silver (Ag) substrate enabled extraordinary control over water dissociation reactions. By injecting electrons into the MgO/Ag surface with an STM tip, they were able to excite absorbed water molecules and cause them to sever hydrogen and hydroxide ions. Optimizing the MgO film thickness was a key part of this approach; only ultrathin layers could direct water splitting owing to its enhanced electronic interaction strength.

This relationship between insulator thickness and chemical reactivity suggested to the researchers that the oxide–metal interface plays a crucial role in directing catalytic reactions. Engineering specific flaws into the ultrathin interface could be one way to heighten the electronic control over the water-splitting process. However, since artificially manipulating oxide atoms is a difficult experimental procedure, they used density functional theory simulations, based on quantum mechanics, to analyze the role of structural imperfections in MgO.

Surprisingly, the researchers found that three different types of defects—oxygen and magnesium impurities, as well as an oxygen vacancy—improved water adsorption and substantially lowered dissociation energy barriers compared to an ideal MgO film. Further analysis revealed that the oxide defects accumulate charges injected into the substrate, creating an electronic environment that speeds up the catalytic water splitting. “In the presence of these defects, the film’s chemical reactivity can be greatly enhanced,” says Kim.

The next goal for the researchers is to find systematic techniques to control interface imperfections on these novel catalytic films—an objective best achieved by the team’s unique combined experimental–theoretical approach, notes Kim.

Reference

Jung, J., Shin, H.-J., Kim, Y. & Kawai, M. Activation of ultrathin oxide films for chemical reaction by interface defects. Journal of the American Chemical Society 133, 6142–6145 (2011).

Shin, H.-J., Jung, J., Motobayashi, K., Yanagisawa, S., Morikawa, Y., Kim, Y. & Kawai, M. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Materials 9, 442–447 (2010)

Jung, J., Shin, H.-J., Kim, Y. & Kawai, M. Controlling water dissociation on an ultrathin MgO film by tuning film thickness. Physical Review B 82, 085413 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Embracing MgO STM computer simulation film thickness hybrid vehicle water molecule

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>