Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embracing superficial imperfections

04.07.2011
Numerical simulations reveal that deliberately engineering defects into ultrathin oxide films enhances catalytic water-splitting reactions

Chemists normally work rigorously to exclude impurities from their reactions. This is especially true for scanning tunneling microscopy (STM) experiments that can produce atomic-scale images of surfaces. Using STM to investigate processes such as catalysis usually requires pristine substrates—any flaws or foreign particles in the surface can critically interfere with the test study.

Preconceptions about interface defects and catalysis are about to change, however, thanks to recently published research led by Yousoo Kim and Maki Kawai at the RIKEN Advanced Science Institute in Wako.

Through a series of high-level computer simulations, the researchers found that the catalytic splitting of water molecules occurs faster on an ultrathin insulating film containing misplaced atoms than on a non-defective surface. Because water splitting reactions are one of the easiest ways to generate hydrogen fuel, this finding could be a boon to future fleets of hybrid vehicles.

Recently, Kim, Kawai, and colleagues discovered that depositing insulating magnesium oxide (MgO) onto a silver (Ag) substrate enabled extraordinary control over water dissociation reactions. By injecting electrons into the MgO/Ag surface with an STM tip, they were able to excite absorbed water molecules and cause them to sever hydrogen and hydroxide ions. Optimizing the MgO film thickness was a key part of this approach; only ultrathin layers could direct water splitting owing to its enhanced electronic interaction strength.

This relationship between insulator thickness and chemical reactivity suggested to the researchers that the oxide–metal interface plays a crucial role in directing catalytic reactions. Engineering specific flaws into the ultrathin interface could be one way to heighten the electronic control over the water-splitting process. However, since artificially manipulating oxide atoms is a difficult experimental procedure, they used density functional theory simulations, based on quantum mechanics, to analyze the role of structural imperfections in MgO.

Surprisingly, the researchers found that three different types of defects—oxygen and magnesium impurities, as well as an oxygen vacancy—improved water adsorption and substantially lowered dissociation energy barriers compared to an ideal MgO film. Further analysis revealed that the oxide defects accumulate charges injected into the substrate, creating an electronic environment that speeds up the catalytic water splitting. “In the presence of these defects, the film’s chemical reactivity can be greatly enhanced,” says Kim.

The next goal for the researchers is to find systematic techniques to control interface imperfections on these novel catalytic films—an objective best achieved by the team’s unique combined experimental–theoretical approach, notes Kim.

Reference

Jung, J., Shin, H.-J., Kim, Y. & Kawai, M. Activation of ultrathin oxide films for chemical reaction by interface defects. Journal of the American Chemical Society 133, 6142–6145 (2011).

Shin, H.-J., Jung, J., Motobayashi, K., Yanagisawa, S., Morikawa, Y., Kim, Y. & Kawai, M. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Materials 9, 442–447 (2010)

Jung, J., Shin, H.-J., Kim, Y. & Kawai, M. Controlling water dissociation on an ultrathin MgO film by tuning film thickness. Physical Review B 82, 085413 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Embracing MgO STM computer simulation film thickness hybrid vehicle water molecule

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>