Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embedded nerve cells hold the key to brain activity

24.07.2013
Scientists from Freiburg propose new approach to unravel the function of the human brain

Understanding complex systems such as the brain of mammals: Dr. Arvind Kumar and colleagues from the Bernstein Center and the Cluster of Excellence BrainLinks-BrainTools at the University of Freiburg present a new view on brain function.


For a network of five elements, the combinations to be tested to ascertain each unit’s effect are already 52 (shown as orbiting symbols). Hence, this traditional way to investigate brain function is useless in most cases (Image: Grah/BrainLinks-BrainTools, symbols: Mate2code, Creative Commons).

Much of today’s brain research follows an approach that has been in use for decades: An area of the brain is either silenced of augmented in its activity, and the resulting effects in other parts of the brain – or in the whole organ – are measured. While this approach is very successful in understanding how the brain processes input from our senses, a team of scientists from Freiburg argues that it is too simple when trying to understand other brain regions. The team presents their findings in the current issue of the journal “Trends in Neuroscience”.

“The traditional approach reduces the brain’s enormous complexity by defining relatively arbitrary subunits”, Kumar and his colleagues explain. For this abstraction to work, information must flow in one direction only. But this is not what happens in the brain, which is a complex network of smaller sub-networks that allows feedback to preceding units. Even for a network of ten units, unraveling each unit’s function would require more than 100,000 individual experimental setups – an impossible task.

“Perhaps, the main question in understanding the brain is not so much how a particular area affects the activity of others, but rather how exactly brain activity can be changed from one state to another”, Kumar states. For this purpose, the neuroscientists introduced a new quality of nerve cells: their embeddedness. This is a measure for the role that a neuron plays within a network. It combines data about where a nerve cell receives information from, where it connects to, and how much it contributes to the whole network. The researchers combine this idea with the insight that already a limited number of elements within a network can control its overall behavior. Concentrating on these ‘driving neurons’ promises that even manipulating only a small number of nerve cells will provide new insight about the dynamics within the whole network. The team from Freiburg hopes that this will open new perspectives on understanding the brain, its function – and dysfunction.

Original publication:
Arvind Kumar, Ioannis Vlachos, Ad Aertsen, Clemens Boucsein (2013) Challenges of understanding brain function by selective modulation of neuronal subpopulations. Trends in Neuroscience, http://dx.doi.org/10.1016/j.tins.2013.06.005
Contact:
Dr. Gunnar Grah
Science Communicator, BrainLinks-BrainTools
University of Freiburg
Phone: +49 (0)761 / 203 – 67722
Fax: +49 (0)761 / 203 – 9559
E-Mail: grah@brainlinks-braintools.uni-freiburg.de

Dr. Gunnar Grah | University of Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>