Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eliminating protein in specific brain cells blocks nicotine reward

27.07.2011
Animal study suggests a common process for both the pleasurable and anxiety-reducing effects of nicotine

Removing a protein from cells located in the brain's reward center blocks the anxiety-reducing and rewarding effects of nicotine, according to a new animal study in the July 27 issue of The Journal of Neuroscience. The findings may help researchers better understand how nicotine affects the brain.

Nicotine works by binding to proteins called nicotinic receptors on the surface of brain cells. In the new study, researchers led by Tresa McGranahan, Stephen Heinemann, PhD, and T. K. Booker, PhD, of the Salk Institute for Biological Studies, found that removing a specific type of nicotinic receptor from brain cells that produce dopamine — a chemical released in response to reward — makes mice less likely to seek out nicotine. The mice also did not show reductions in anxiety-like behaviors normally seen after nicotine treatment. Smokers commonly report anxiety relief as a key factor in continued smoking or relapse.

"These findings show that the rewarding and anxiety-reducing properties of nicotine, thought to play a key role in the development of tobacco addiction, are related to actions at a single set of brain cells," said Paul Kenny, PhD, an expert on drug addiction at Scripps Research Institute, who was unaffiliated with the study.

Previous studies showed blocking the alpha4 nicotinic receptor within the ventral tegmental area (VTA) — a brain region important in motivation, emotion, and addiction — decreases the rewarding properties of nicotine. Because alpha4 receptors are present on several cell types in the VTA, it was unclear how nicotine produced pleasurable feelings.

To zero in on the circuit important in the brain's response to nicotine, researchers developed mice with a mutation that left them unable to produce the alpha4 receptor, but only on dopamine brain cells. Mice lacking alpha4 receptors in these cells spent less time looking to obtain nicotine compared with normal mice, suggesting the alpha4 receptors are required for the rewarding effects of nicotine. Nicotine also failed to reduce anxiety-like behaviors in the mutant mice, as it normally does in healthy mice.

"Identification of the type of nicotinic receptors necessary for two key features of nicotine addiction — reward and anxiety — may help us better understand the pathway that leads to nicotine dependence, and potential treatment for the one billion cigarette smokers worldwide," McGranahan said. Diseases from tobacco use remain a major killer throughout the world, causing more than 5 million deaths per year.

The findings could guide researchers to a better understanding of the mechanisms of tobacco addiction and assist in the development of new drugs to treat tobacco addiction and provide relief from anxiety disorders, Kenny added.

The research was supported by the National Institute of Neurological Disorders and Stroke, the National Institute on Alcohol Abuse and Alcoholism, and the National Institute on Drug Abuse.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 40,000 basic scientists and clinicians who study the brain and nervous system. McGranahan can be reached at tmcgranahan@ucsd.edu. More information on the science of addiction can be found in the Society's Brain Briefings and Research & Discoveries publications.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>