Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrophilic Sneeze

06.08.2012
Terpenoids isolated from common ragweed show ability to induce airways irritation

Allergy to pollen of common ragweed is increasingly affecting patients and is second only to grass pollen in terms of incidence in the general population of many European countries.



An Italian team led by Giovanni Appendino and Orazio Taglialatela-Scafati has now taken the first steps to investigate the phytochemical profile of the European population of A. artemisiifolia and studied its activation of TRPA1, a major player in the induction of airways inflammatory reactions. As the scientists report in the European Journal of Organic Chemistry, their findings help to better understand the increasing problem of sensitization to Ambrosia pollen.

Surprisingly, limited information exists on the phytochemistry of common ragweed (Ambrosia artemisiifolia L.), despite the potential involvement of non-protein constituents in the unusual severity of the allergic reactions induced by its pollen. A. artemisiifolia is an invasive species native to North America, but it is nowadays widespread in most temperate regions of the world.

The pollen from A. artemisiifolia induces respiratory symptoms ranging from rhinitis and rhinoconjunctivitis to asthma in a growing share of the population, with increasing economic costs to public health systems. The pollen grains are small and light and are easily subjected to long distance transport.

As such, they can also deeply penetrate the aerial pathways, inducing local irritation. The Italian team collected samples near Novara, Italy, and along with some already known compounds, eight novel sesquiterpenoids were isolated from the aerial parts of A. artemisiifolia. TRPA1 (a polymodal sensor) is highly expressed in the aerial pathways and is associated with irritation induced by airborne contaminants and the induction of asthmatic crises. In a previous study, an excellent correlation was found between the activation of TRPA1 and Michael reactivity, as determined by a cysteamine NMR assay. Thus, after identification of the new compounds, their Michael activity and their ability to activate TRPA1 were investigated.

The authors found that some of the electrophilic terpenoids from A. artemisiifolia behaved as potent activators of TRPA1, and that the pollen contained high concentrations of this type of compound, some of which are well-known skin allergens. Interestingly, they also found that the cysteamine assay showed discrimination between structurally related electrophilic compounds, which is important in identifying the most potent allergens present in the mixture extracted from the plant. The scientists’ results help to understand the pathogenesis of allergy to common ragweed, highlighting the potential role of electrophilic terpenoids in this pathology.

Author: Giovanni Appendino, Università degli Studi del Piemonte Orientale, Novara (Italy), http://www.discaff.unipmn.it/people/people-details.asp?id_personale=7
Title: Sesquiterpenoids from Common Ragweed (Ambrosia artemisiifolia L.), an Invasive Biological Polluter

European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201200650

Giovanni Appendino | Wiley-VCH
Further information:
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>