Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the electron cloud

19.04.2010
Mapping the shape and dynamics of a molecule’s outer electron cloud is now possible using a novel experimental technique

The chemistry between atoms and molecules is strongly determined by their outer electron orbitals, or clouds, which participate in chemical processes. A team from three Japanese research institutes has now developed a method that can measure the three-dimensional shape and dynamics of an electron cloud1.

“The shape of an electron cloud is at the heart of intermolecular interactions that lead to beautiful chemistry,” comments Toshinori Suzuki from the RIKEN Advanced Science Institute in Wako, who led the research team.

Measuring the dynamics of an electron cloud is challenging because molecules in gases and liquids always move randomly; this makes it difficult to take a ‘snapshot’ of movement averaged over many molecules at a specific moment in time. However, the excitation of nitric oxide (NO) by a polarized laser beam can align those molecules along one axis, so that the measurement of their outer electron cloud becomes possible.

To detect the shape of the outer electron cloud of an NO molecule aligned by the first laser pulse, Suzuki and colleagues released the electrons from the molecule using a second laser pulse. They then applied an electric field to accelerate and project the expanding electron cloud onto a fluorescent screen where it was visualized as a direct representation of the original electron distribution (Fig. 1 - click on link for figure). The researchers then used computer algorithms, similar to those from computer tomography, to construct a three-dimensional picture from the two-dimensional representation.

Fundamental quantum mechanical principles limit the degree to which the molecules can be aligned by the laser pulse, Suzuki notes. This means that there is always unavoidable blurring in the reconstructed three-dimensional image. Removing this blurring in the final images was the most difficult part of the process, he says.

Suzuki and colleagues therefore analyzed how a three-dimensional image changes when the molecules rotate out of alignment. By correcting these misalignment effects, they eventually succeeded in perfectly sharpening the image.

The team’s algorithm can visualize the outer electron cloud of a molecule at rest, but the challenge now is to map the rapid changes that occur during chemical reactions. “The NO molecule was just a testing ground,” explains Suzuki. “Our main target is more complex molecules and their chemical reactions in response to light of different color.” Outlining his future vision, Suzuki says he would like to study the mechanism of photodamage to DNA starting with real-time observations of electron motions in their constituent base molecules.

The corresponding author for this highlight is based at the Chemical Dynamics Laboratory, RIKEN Advanced Science Institute

1. Tang, Y., Suzuki, Y.-I., Horio, T. & Suzuki, T. Molecular frame image restoration and partial wave analysis of photoionization dynamics of NO by time-energy mapping of photoelectron angular distribution. Physical Review Letters 104, 073002 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>