Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the electron cloud

19.04.2010
Mapping the shape and dynamics of a molecule’s outer electron cloud is now possible using a novel experimental technique

The chemistry between atoms and molecules is strongly determined by their outer electron orbitals, or clouds, which participate in chemical processes. A team from three Japanese research institutes has now developed a method that can measure the three-dimensional shape and dynamics of an electron cloud1.

“The shape of an electron cloud is at the heart of intermolecular interactions that lead to beautiful chemistry,” comments Toshinori Suzuki from the RIKEN Advanced Science Institute in Wako, who led the research team.

Measuring the dynamics of an electron cloud is challenging because molecules in gases and liquids always move randomly; this makes it difficult to take a ‘snapshot’ of movement averaged over many molecules at a specific moment in time. However, the excitation of nitric oxide (NO) by a polarized laser beam can align those molecules along one axis, so that the measurement of their outer electron cloud becomes possible.

To detect the shape of the outer electron cloud of an NO molecule aligned by the first laser pulse, Suzuki and colleagues released the electrons from the molecule using a second laser pulse. They then applied an electric field to accelerate and project the expanding electron cloud onto a fluorescent screen where it was visualized as a direct representation of the original electron distribution (Fig. 1 - click on link for figure). The researchers then used computer algorithms, similar to those from computer tomography, to construct a three-dimensional picture from the two-dimensional representation.

Fundamental quantum mechanical principles limit the degree to which the molecules can be aligned by the laser pulse, Suzuki notes. This means that there is always unavoidable blurring in the reconstructed three-dimensional image. Removing this blurring in the final images was the most difficult part of the process, he says.

Suzuki and colleagues therefore analyzed how a three-dimensional image changes when the molecules rotate out of alignment. By correcting these misalignment effects, they eventually succeeded in perfectly sharpening the image.

The team’s algorithm can visualize the outer electron cloud of a molecule at rest, but the challenge now is to map the rapid changes that occur during chemical reactions. “The NO molecule was just a testing ground,” explains Suzuki. “Our main target is more complex molecules and their chemical reactions in response to light of different color.” Outlining his future vision, Suzuki says he would like to study the mechanism of photodamage to DNA starting with real-time observations of electron motions in their constituent base molecules.

The corresponding author for this highlight is based at the Chemical Dynamics Laboratory, RIKEN Advanced Science Institute

1. Tang, Y., Suzuki, Y.-I., Horio, T. & Suzuki, T. Molecular frame image restoration and partial wave analysis of photoionization dynamics of NO by time-energy mapping of photoelectron angular distribution. Physical Review Letters 104, 073002 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>