Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the electron cloud

19.04.2010
Mapping the shape and dynamics of a molecule’s outer electron cloud is now possible using a novel experimental technique

The chemistry between atoms and molecules is strongly determined by their outer electron orbitals, or clouds, which participate in chemical processes. A team from three Japanese research institutes has now developed a method that can measure the three-dimensional shape and dynamics of an electron cloud1.

“The shape of an electron cloud is at the heart of intermolecular interactions that lead to beautiful chemistry,” comments Toshinori Suzuki from the RIKEN Advanced Science Institute in Wako, who led the research team.

Measuring the dynamics of an electron cloud is challenging because molecules in gases and liquids always move randomly; this makes it difficult to take a ‘snapshot’ of movement averaged over many molecules at a specific moment in time. However, the excitation of nitric oxide (NO) by a polarized laser beam can align those molecules along one axis, so that the measurement of their outer electron cloud becomes possible.

To detect the shape of the outer electron cloud of an NO molecule aligned by the first laser pulse, Suzuki and colleagues released the electrons from the molecule using a second laser pulse. They then applied an electric field to accelerate and project the expanding electron cloud onto a fluorescent screen where it was visualized as a direct representation of the original electron distribution (Fig. 1 - click on link for figure). The researchers then used computer algorithms, similar to those from computer tomography, to construct a three-dimensional picture from the two-dimensional representation.

Fundamental quantum mechanical principles limit the degree to which the molecules can be aligned by the laser pulse, Suzuki notes. This means that there is always unavoidable blurring in the reconstructed three-dimensional image. Removing this blurring in the final images was the most difficult part of the process, he says.

Suzuki and colleagues therefore analyzed how a three-dimensional image changes when the molecules rotate out of alignment. By correcting these misalignment effects, they eventually succeeded in perfectly sharpening the image.

The team’s algorithm can visualize the outer electron cloud of a molecule at rest, but the challenge now is to map the rapid changes that occur during chemical reactions. “The NO molecule was just a testing ground,” explains Suzuki. “Our main target is more complex molecules and their chemical reactions in response to light of different color.” Outlining his future vision, Suzuki says he would like to study the mechanism of photodamage to DNA starting with real-time observations of electron motions in their constituent base molecules.

The corresponding author for this highlight is based at the Chemical Dynamics Laboratory, RIKEN Advanced Science Institute

1. Tang, Y., Suzuki, Y.-I., Horio, T. & Suzuki, T. Molecular frame image restoration and partial wave analysis of photoionization dynamics of NO by time-energy mapping of photoelectron angular distribution. Physical Review Letters 104, 073002 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>