Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric Signals Amplify Weak Olfactory Stimuli in the Nose

01.02.2011
Scientists at Heidelberg University decipher functioning of olfactory cells

The human olfactory system possesses a special electric amplification mechanism that enables olfactory cells to respond even to extremely weak stimuli.

Scientists at Heidelberg University headed by physiologist Prof. Dr. Stephan Frings have now established how this mechanism works. Crucial is the role played by chloride ions stored in the sensory cilia of the nose. As soon as the olfactory receptors in the sensory cilia detect odorants, the chloride ions are immediately discharged. This process generates strong electric signals that pass on the relevant olfactory information to the brain.

Our noses detect a huge variety of odorants in the air we breathe. The olfactory system is confronted with an immense diversity of chemical compounds. The air in a room where a coffee machine is making coffee, where there are plants on the window-sill and people walking in and out contains thousands of different odorants. But our olfactory system finds this apparent chaos easy to deal with. It unerringly identifies the smell of coffee, although that smell alone is made up of over 800 different odorants. For this purpose the olfactory cells in the nose are equipped with olfactory receptors, proteins presented to the inhaled air on fine sensory cilia by the olfactory cells.

Up to now, research on olfactory cells and their receptors has been dogged by one unanswered question. The concentration of individual odorants in the nose – i.e. the number of molecules of a given odorant per cubic centimetre of ambient air – is very low. In addition, olfactory receptors have proved to be relatively insensitive, only responding very weakly to low odorant concentrations. So how can the key function of our highly sensitive olfactory system be performed by receptors that are themselves remarkably insensitive? The answer lies in the electric amplification mechanism for the olfactory cells deciphered by Prof. Frings and his team at Heidelberg University’s Centre for Organismal Studies.

The sensory cilia of the olfactory cells prepare themselves for the job in a special way. A protein complex pumps chloride ions into the interior of the sensory cilia, thus making them into well-filled chloride stores. When an olfactory stimulus occurs, another protein swings into action, a chloride channel that the sensory cilia possess many copies of in their external membranes. These chloride channels remain closed as long as the olfactory cell is at rest. When an olfactory stimulus is registered, the weak response of the olfactory receptors immediately opens all the channels. The release of negatively charged chloride ions causes a loading inversion in the olfactory cell. This in its turn produces strong electric signals that are conveyed to the brain with the olfactory information.

For more information, go to http://www.molekulare-physiologie.de/index_en.html.

Original publication:
T. Hengl, H. Kaneko, K. Dauner, K. Vocke, S. Frings, F. Möhrlen: Molecular Components of Signal Amplification in Olfactory Sensory Cilia. PNAS (30 March 2010) 107:6052-6057, doi: 10.1073/pnas.0909032107
Contact:
Prof. Dr. Stephan Frings
Centre for Organismal Studies
Department of Molecular Animal Physiology
phone: +49 6221 545661
s.frings@zoo.uni-heidelberg.de
Communications and Marketing
Press Office, phon +49 6221 543211
presse@reaktorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de
http://www.molekulare-physiologie.de/index_en.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>