Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ejaculation in the maize flower

22.06.2010
Sperm swim to egg cells and fertilize them – at least that is what happens in people. In many flowering plants, however, the sperm cells are immobile. So, how do they reach their destination? Researchers from Würzburg and Regensburg know the answer.

The sperm cells of flowering plants are found in pollen grains that are carried on the wind or by insects to other flowers. There they germinate: they form tubes containing two sperm cells each and penetrate the tissue of the ovary as far as the ovules. These contain the egg cells, each flanked by two helper cells.

How does a pollen tube find its way to one of the numerous ovules? This question has occupied the minds of plant scientists ever since Eduard Strasburger’s time (1844-1912). This botanist from Bonn had already successfully described fertilization in plants – based on nothing more than observations under a microscope.

“Today we know that the helper cells release a signaling substance that entices the pollen tube,” says Professor Thomas Dresselhaus from Regensburg. This finding was published by his working group in 2009. Together with plant researchers Dirk Becker and Dietmar Geiger from the Department of Molecular Plant Physiology and Biophysics at the University of Würzburg, the Regensburg scientists have now discovered a new signaling substance that lets the pollen tube rupture close to the egg cells. This result has been published in the magazine PLoS Biology.

Signaling substance in the defensin mould

The newly discovered signaling substance is a protein molecule that closely resembles the so-called defensins. Plants produce huge variations of these proteins in their male and female sex organs. Until now, science assumed that defensins protect the gametes and the developing seed against pathogens. This is because defensins are originally part of the immune system of animals and plants; they combat germs such as bacteria and fungi.

However, defensins clearly play an important role in sex between plants as well. This is borne out by the findings made by the Regensburg and Würzburg researchers using maize: in its ovules the helper cells release a special form of defense proteins, known as ZmES1-4 defensins.

Pollen tube ruptures alongside the egg cells

One of the defensins entices the pollen tube, another causes it to rupture as soon as it is right next to the egg cells – a kind of ejaculation that sets the immobile sperm cells free so that fertilization can occur. “The ZmES1-4 defensins open potassium ion channels in the pollen tube,” reports Dirk Becker and Dietmar Geiger, “resulting in an explosive release of sperm cells.”

New plant hybrids?

These findings offer the promise of new application possibilities: they mean that, where possible, the natural barriers that prevent cross-fertilization between different plant species can be overcome.

“It would be desirable, for example, to incorporate the properties of certain wild grasses into grains through cross-fertilization,” explains Dirk Becker. It may be possible to achieve such results in the future by manipulating the potassium channels or defensins.

Findings on the evolution of procreation

The researchers’ work also delivers fresh insights into plant evolution. “Our results indicate that even the very first plants on the earth some 470 million years ago and later also the flowering plants that first sprung up around 170 million years ago used disease defense mechanisms and adapted them to develop new procreation strategies.”

The evolutionary predecessors of the flowering plants – mosses and ferns – have mobile sperm cells, as do some flowering plants themselves. The majority of flowering plants, however, have changed the strategy they use to bring sperm cells and egg cells together: their sperm cells are immobile, and a pollen tube assumes responsibility for carrying them purposefully to the egg cells.

Contact

Dr. Dirk Becker, Department of Botany I – Molecular Plant Physiology and Biophysics at the University of Würzburg, phone +49 (0)931 31-86108, dbecker@botanik.uni-wuerzburg.de

“Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1”, Suseno Amien, Irina Kliwer, Mihaela L. Márton, Thomas Debener, Dietmar Geiger, Dirk Becker, Thomas Dresselhaus, PLoS Biology 8(6): e1000388. doi:10.1371/journal.pbio.1000388

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>