Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ejaculation in the maize flower

22.06.2010
Sperm swim to egg cells and fertilize them – at least that is what happens in people. In many flowering plants, however, the sperm cells are immobile. So, how do they reach their destination? Researchers from Würzburg and Regensburg know the answer.

The sperm cells of flowering plants are found in pollen grains that are carried on the wind or by insects to other flowers. There they germinate: they form tubes containing two sperm cells each and penetrate the tissue of the ovary as far as the ovules. These contain the egg cells, each flanked by two helper cells.

How does a pollen tube find its way to one of the numerous ovules? This question has occupied the minds of plant scientists ever since Eduard Strasburger’s time (1844-1912). This botanist from Bonn had already successfully described fertilization in plants – based on nothing more than observations under a microscope.

“Today we know that the helper cells release a signaling substance that entices the pollen tube,” says Professor Thomas Dresselhaus from Regensburg. This finding was published by his working group in 2009. Together with plant researchers Dirk Becker and Dietmar Geiger from the Department of Molecular Plant Physiology and Biophysics at the University of Würzburg, the Regensburg scientists have now discovered a new signaling substance that lets the pollen tube rupture close to the egg cells. This result has been published in the magazine PLoS Biology.

Signaling substance in the defensin mould

The newly discovered signaling substance is a protein molecule that closely resembles the so-called defensins. Plants produce huge variations of these proteins in their male and female sex organs. Until now, science assumed that defensins protect the gametes and the developing seed against pathogens. This is because defensins are originally part of the immune system of animals and plants; they combat germs such as bacteria and fungi.

However, defensins clearly play an important role in sex between plants as well. This is borne out by the findings made by the Regensburg and Würzburg researchers using maize: in its ovules the helper cells release a special form of defense proteins, known as ZmES1-4 defensins.

Pollen tube ruptures alongside the egg cells

One of the defensins entices the pollen tube, another causes it to rupture as soon as it is right next to the egg cells – a kind of ejaculation that sets the immobile sperm cells free so that fertilization can occur. “The ZmES1-4 defensins open potassium ion channels in the pollen tube,” reports Dirk Becker and Dietmar Geiger, “resulting in an explosive release of sperm cells.”

New plant hybrids?

These findings offer the promise of new application possibilities: they mean that, where possible, the natural barriers that prevent cross-fertilization between different plant species can be overcome.

“It would be desirable, for example, to incorporate the properties of certain wild grasses into grains through cross-fertilization,” explains Dirk Becker. It may be possible to achieve such results in the future by manipulating the potassium channels or defensins.

Findings on the evolution of procreation

The researchers’ work also delivers fresh insights into plant evolution. “Our results indicate that even the very first plants on the earth some 470 million years ago and later also the flowering plants that first sprung up around 170 million years ago used disease defense mechanisms and adapted them to develop new procreation strategies.”

The evolutionary predecessors of the flowering plants – mosses and ferns – have mobile sperm cells, as do some flowering plants themselves. The majority of flowering plants, however, have changed the strategy they use to bring sperm cells and egg cells together: their sperm cells are immobile, and a pollen tube assumes responsibility for carrying them purposefully to the egg cells.

Contact

Dr. Dirk Becker, Department of Botany I – Molecular Plant Physiology and Biophysics at the University of Würzburg, phone +49 (0)931 31-86108, dbecker@botanik.uni-wuerzburg.de

“Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1”, Suseno Amien, Irina Kliwer, Mihaela L. Márton, Thomas Debener, Dietmar Geiger, Dirk Becker, Thomas Dresselhaus, PLoS Biology 8(6): e1000388. doi:10.1371/journal.pbio.1000388

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>