Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ejaculation in the maize flower

22.06.2010
Sperm swim to egg cells and fertilize them – at least that is what happens in people. In many flowering plants, however, the sperm cells are immobile. So, how do they reach their destination? Researchers from Würzburg and Regensburg know the answer.

The sperm cells of flowering plants are found in pollen grains that are carried on the wind or by insects to other flowers. There they germinate: they form tubes containing two sperm cells each and penetrate the tissue of the ovary as far as the ovules. These contain the egg cells, each flanked by two helper cells.

How does a pollen tube find its way to one of the numerous ovules? This question has occupied the minds of plant scientists ever since Eduard Strasburger’s time (1844-1912). This botanist from Bonn had already successfully described fertilization in plants – based on nothing more than observations under a microscope.

“Today we know that the helper cells release a signaling substance that entices the pollen tube,” says Professor Thomas Dresselhaus from Regensburg. This finding was published by his working group in 2009. Together with plant researchers Dirk Becker and Dietmar Geiger from the Department of Molecular Plant Physiology and Biophysics at the University of Würzburg, the Regensburg scientists have now discovered a new signaling substance that lets the pollen tube rupture close to the egg cells. This result has been published in the magazine PLoS Biology.

Signaling substance in the defensin mould

The newly discovered signaling substance is a protein molecule that closely resembles the so-called defensins. Plants produce huge variations of these proteins in their male and female sex organs. Until now, science assumed that defensins protect the gametes and the developing seed against pathogens. This is because defensins are originally part of the immune system of animals and plants; they combat germs such as bacteria and fungi.

However, defensins clearly play an important role in sex between plants as well. This is borne out by the findings made by the Regensburg and Würzburg researchers using maize: in its ovules the helper cells release a special form of defense proteins, known as ZmES1-4 defensins.

Pollen tube ruptures alongside the egg cells

One of the defensins entices the pollen tube, another causes it to rupture as soon as it is right next to the egg cells – a kind of ejaculation that sets the immobile sperm cells free so that fertilization can occur. “The ZmES1-4 defensins open potassium ion channels in the pollen tube,” reports Dirk Becker and Dietmar Geiger, “resulting in an explosive release of sperm cells.”

New plant hybrids?

These findings offer the promise of new application possibilities: they mean that, where possible, the natural barriers that prevent cross-fertilization between different plant species can be overcome.

“It would be desirable, for example, to incorporate the properties of certain wild grasses into grains through cross-fertilization,” explains Dirk Becker. It may be possible to achieve such results in the future by manipulating the potassium channels or defensins.

Findings on the evolution of procreation

The researchers’ work also delivers fresh insights into plant evolution. “Our results indicate that even the very first plants on the earth some 470 million years ago and later also the flowering plants that first sprung up around 170 million years ago used disease defense mechanisms and adapted them to develop new procreation strategies.”

The evolutionary predecessors of the flowering plants – mosses and ferns – have mobile sperm cells, as do some flowering plants themselves. The majority of flowering plants, however, have changed the strategy they use to bring sperm cells and egg cells together: their sperm cells are immobile, and a pollen tube assumes responsibility for carrying them purposefully to the egg cells.

Contact

Dr. Dirk Becker, Department of Botany I – Molecular Plant Physiology and Biophysics at the University of Würzburg, phone +49 (0)931 31-86108, dbecker@botanik.uni-wuerzburg.de

“Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1”, Suseno Amien, Irina Kliwer, Mihaela L. Márton, Thomas Debener, Dietmar Geiger, Dirk Becker, Thomas Dresselhaus, PLoS Biology 8(6): e1000388. doi:10.1371/journal.pbio.1000388

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>