Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Effective prostate cancer treatment discovery

Monash University biomedical scientists have identified a new way to treat castrate resistant cells in prostate cancer sufferers – the most common cancer in Australian men.

For more than 60 years the main way to treat men with prostate cancer has involved removing the hormones that fuel growth of the cancer cells. Although initially effective this treatment inevitably fails and when the tumour growth resumes, the disease in incurable.

The team, from the Prostate & Breast Cancer Research Program, has discovered a way to treat these potentially fatal diseased cells, which remain in a patient after they have undergone hormone treatment.

The findings have been published in the prestigious medical journal PNAS.

Associate Dean, Research Centres & Institutes and co-author Professor Gail Risbridger said the studies provided proof of the controversial concept that estrogens (hormones mainly thought as being important for women) could be good for men and used therapeutically to treat prostate cancer.

"The research showed that drugs that activate one of the two estrogen receptors, causes cell death. Most commonly cell death in patients with prostate cancer is achieved by withdrawing androgens (male hormones) which results in castration," Professor Risbridger said.

"Although the bulk of the tumour is removed by castration, some cells remain and these castrate-resistant cells are the ones that give rise to recurrent incurable disease"

The team used a drug developed to selectively and specifically activate the beta estrogen receptor in the prostate.

"It not only inhibits the growth of prostate cancer but also kills off cancer cells that are resistant to conventional treatment such as androgen deprivation therapy, more commonly known as castration therapy and does so using a mechanism that is different to castration." Professor Risbridger said.

The team made the discovery in animal models, and then successfully replicated laboratory results using human cells and tissues from patients with prostate cancer.

"The team at Monash University has discovered how this compound working through the beta receptors targets a small, but very important, population of cells in the tumour. It is a significant piece of the puzzle that will help medical research in this field – an achievement that could eventually enhance treatment options for patients around the world with advanced prostate cancer." Professor Risbridger said.

Prostate cancer is the most common cancer in Australian men and is the second most common cause of cancer deaths in men. Each year in Australia, close to 3,300 men die of prostate cancer - equal to the number of women who die from breast cancer annually. About 20,000 new cases are diagnosed in Australia every year and one in nine men will develop prostate cancer in their lifetime. Current treatments of prostate cancer include hormone therapy however patient side effects can be devastating.

"This research also has personal meaning and provides me with the imperative to conduct basic biomedical research where the fundamental outcomes such as those we describe, may ultimately translate into more effective ways to treat prostate cancer" Professor Risbridger said.

For a copy of the research paper or to arrange an interview with researcher Professor Risbridger contact Samantha Blair, Media & Communications + 61 3 99034841

Samantha Blair | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>