Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective prostate cancer treatment discovery

26.02.2010
Monash University biomedical scientists have identified a new way to treat castrate resistant cells in prostate cancer sufferers – the most common cancer in Australian men.

For more than 60 years the main way to treat men with prostate cancer has involved removing the hormones that fuel growth of the cancer cells. Although initially effective this treatment inevitably fails and when the tumour growth resumes, the disease in incurable.

The team, from the Prostate & Breast Cancer Research Program, has discovered a way to treat these potentially fatal diseased cells, which remain in a patient after they have undergone hormone treatment.

The findings have been published in the prestigious medical journal PNAS.

Associate Dean, Research Centres & Institutes and co-author Professor Gail Risbridger said the studies provided proof of the controversial concept that estrogens (hormones mainly thought as being important for women) could be good for men and used therapeutically to treat prostate cancer.

"The research showed that drugs that activate one of the two estrogen receptors, causes cell death. Most commonly cell death in patients with prostate cancer is achieved by withdrawing androgens (male hormones) which results in castration," Professor Risbridger said.

"Although the bulk of the tumour is removed by castration, some cells remain and these castrate-resistant cells are the ones that give rise to recurrent incurable disease"

The team used a drug developed to selectively and specifically activate the beta estrogen receptor in the prostate.

"It not only inhibits the growth of prostate cancer but also kills off cancer cells that are resistant to conventional treatment such as androgen deprivation therapy, more commonly known as castration therapy and does so using a mechanism that is different to castration." Professor Risbridger said.

The team made the discovery in animal models, and then successfully replicated laboratory results using human cells and tissues from patients with prostate cancer.

"The team at Monash University has discovered how this compound working through the beta receptors targets a small, but very important, population of cells in the tumour. It is a significant piece of the puzzle that will help medical research in this field – an achievement that could eventually enhance treatment options for patients around the world with advanced prostate cancer." Professor Risbridger said.

Prostate cancer is the most common cancer in Australian men and is the second most common cause of cancer deaths in men. Each year in Australia, close to 3,300 men die of prostate cancer - equal to the number of women who die from breast cancer annually. About 20,000 new cases are diagnosed in Australia every year and one in nine men will develop prostate cancer in their lifetime. Current treatments of prostate cancer include hormone therapy however patient side effects can be devastating.

"This research also has personal meaning and provides me with the imperative to conduct basic biomedical research where the fundamental outcomes such as those we describe, may ultimately translate into more effective ways to treat prostate cancer" Professor Risbridger said.

For a copy of the research paper or to arrange an interview with researcher Professor Risbridger contact Samantha Blair, Media & Communications + 61 3 99034841

Samantha Blair | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Life Sciences:

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

nachricht Lipid nanodiscs stabilize misfolding protein intermediates red-handed
18.12.2017 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>