Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edible Gas Storage

01.09.2010
Porous metal–organic framework made from food-grade natural products

A spoonful of sugar, a pinch of salt, and a splash of alcohol – those are the ingredients used by scientists to generate a new class of robust nanoporous metal–organic frameworks.

However, the sugar is not ordinary table sugar, but ã-cyclodextrin, produced from biorenewable cornstarch. As Fraser Stoddart and a team of scientists from Northwestern University in Evanston (IL, USA), the University of California in Los Angeles (USA), and the University of St. Andrews (UK) report in the journal Angewandte Chemie, this simple recipe could be the basis for a new class of biocompatible porous crystals made of renewable natural products.

Metal–organic frameworks (MOF) are well-ordered, lattice-like crystals. The nodes of the lattices are complexes of transition metals (such as copper, zinc, nickel, or cobalt); organic molecules make up the connections between the nodes. Within their pores, the MOFs can store gases such as hydrogen or carbon dioxide. Furthermore, they can be used for separation of materials, for catalysis, or for the targeted transport of drugs in the body. Most previously prepared MOFs are made of building blocks that stem from petrochemicals. Stoddart and his team set themselves a challenge to synthesize MOFs from natural products. “The problem is that natural building blocks are generally not symmetrical,” according to Stoddart, “this lack of symmetry seems to prevent them from crystallizing as highly ordered, porous frameworks.”

ã-Cyclodextrin provided the solution to this problem: it comprises eight asymmetrical glucose residues arranged in ring, which is itself symmetrical. In many countries (for example the USA and Japan), cyclodextrins are approved for use as food additives. The second ingredient in the frameworks is an alkali metal salt. Suitable candidates include ordinary table salt (sodium chloride), the common salt substitute potassium chloride, or potassium benzoate, an approved preservative. These ingredients are dissolved in water and then crystallized by vapor diffusion with an alcohol. It is even possible to use commercially available sources such as grain alcohol. “These ingredients are all substances that can be obtained cheaply, in high quality, and of food-grade purity,” says Stoddart.

The resulting crystals consist of cubes made from six ã-cyclodextrin molecules that are linked in three dimensions by potassium ions. These cubes are perfectly arranged to form a porous framework with easily accessible pores. “This arrangement is a previously unknown one,” says Stoddart. “The pore volume encompasses 54% of the solid body.” Particularly atypical of porous materials is the fact that when dissolved in water, the framework simply dissociates back to its components, which can then be crystallized again with alcohol. Says Stoddart: “In this way a degraded framework can easily be recycled or regenerated.”

Author: J. Fraser Stoddart, Northwestern University, Evanston (USA), http://stoddart.northwestern.edu/

Title: Metal-Organic Frameworks from Edible Natural Products

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201002343

J. Fraser Stoddart | Angewandte Chemie
Further information:
http://stoddart.northwestern.edu/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>