Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Economizing chemistry, atom by atom

06.02.2012
Industrial chemistry is set to improve from novel rare-earth metal catalysts that reduce waste and improve aromatic bond-forming reactions

In chemistry, downsizing can have positive attributes. Reducing the number of steps and reagents in synthetic reactions, for example, enables chemists to boost their productivity while reducing their environmental footprint. This type of ‘atom economy’ could soon improve, thanks to a new rare-earth metal catalyst developed by Zhaomin Hou and colleagues at the RIKEN Advanced Science Institute, Wako1. Their catalyst makes it simpler to modify aromatic carbon–hydrogen (C–H) bonds with silicon-bearing silyl ligands—a reaction step critical to pharmaceutical and materials science manufacturers alike.

Silicon, which is less electronegative than carbon or hydrogen atoms, can significantly alter the electronic characteristics of an organic molecule. Replacing the hydrogen atoms of an aromatic C–H group with silyl groups has emerged as an important strategy in industrial-scale chemical synthesis because these substituents can tune molecular reactivity, enabling construction of elaborate chemical frameworks.

Chemists normally use transition metals such as platinum or rhodium to catalyze aromatic silylation reactions. But to achieve high conversions, these catalysts need to be mixed with additional hydrogen acceptor reagents, which can generate unwanted waste products, including alkanes.

Hou and colleagues have pioneered studies into rare-earth metals, such as scandium, which have different catalytic properties to transition metals. Recently, they found that ‘half-sandwich’ scandium complexes, bonded on one side by a flat organic ring, showed unique activity and selectivity in the presence of carbon double bonds2. This made investigations of unsaturated aromatic molecules a natural next step.

When the researchers mixed a methoxy–benzene compound called anisole with the half-sandwich scandium catalyst and a phenylsilane, they found that the silyl group substituted onto the aromatic ring with excellent selectivity and yields (Fig. 1). Furthermore, the catalyst did not require hydrogen acceptor reagents, and generated only H2 gas as a by-product. Hou notes that this reaction is highly advantageous in terms of atom economy.

X-ray and spectroscopic measurements revealed that the working form of the catalyst, which contained a pair of ‘bridging’ hydrogen atoms, activated the reaction by coordinating the anisole’s methoxy group to the rare-earth metal. According to Hou, this relatively strong interaction directs silylation to occur almost exclusively at the position adjacent to the methoxy unit on the aromatic ring—a ‘regioselectivity’ that outshines that of transition metal catalysts, whose weak oxygen–metal interactions often produce an undesirable mix of silylation isomers.

The team will continue to explore new approaches to improving catalytic sustainability and selectivity by tapping into the extraordinary properties of rare-earth metals.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>