Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ebola's secret weapon revealed

03.05.2013
Researchers have discovered the mechanism behind one of the Ebola virus' most dangerous attributes: its ability to disarm the adaptive immune system.

University of Texas Medical Branch at Galveston scientists determined that Ebola short-circuits the immune system using proteins that work together to shut down cellular signaling related to interferon. Disruption of this activity, the researchers found, allows Ebola to prevent the full development of dendritic cells that would otherwise trigger an immune response to the virus.

"Dendritic cells typically undergo a process called 'maturation' when they're infected by a virus — they change shape and present antigens on their surface that tell T-cells to attack that particular virus, thus generating an adaptive immune response," said UTMB professor Alexander Bukreyev, senior author of a paper on the discovery now online in the Journal of Virology. "But Ebola prevents dendritic-cell maturation and produces a severe infection without an effective adaptive immune response. We found that its ability to do this depends on several specific regions of two different proteins."

Bukreyev's research group made the discovery after a series of procedures that started with a clone of the Ebola Zaire virus strain. Working under maximum-containment conditions in a biosafety level 4 facility in UTMB's Galveston National Laboratory, the team introduced mutations into the virus' genetic code at four locations thought to generate proteins that affected immune response.

They then infected human dendritic cells with each of the resulting new strains and compared the results with those produced by unmutated Ebola Zaire. Each of the four new viruses, they found, was unable to suppress dendritic-cell maturation.

"We saw two very interesting things," Bukreyev said. "First, that these mutations restore maturation of dendritic cells very effectively, and second, that a mutation in even one of these genetic domains makes the virus unable to suppress maturation. That means that the virus needs multiple combined effects in order to undermine the immune system in this way."

Ebola's ability to evade the human immune response is one of the factors that accounts for its high mortality rate — up to 90 percent in humans — and the notoriety that it gained after its first appearance in Zaire in 1976, in an outbreak that killed 280 people. Zaire — now the Democratic Republic of the Congo — is the home country of Ndongala Lubaki, lead author on the paper and a postdoctoral fellow at UTMB.

Other authors of the Journal of Virology paper include postdoctoral fellow Phillipp Ilinykh, assistant research lab director Collette Pietzsch, research scientist Bersabeh Tigabu, assistant professor Alexander Freiberg and Richard Koup of the National Institute of Allergy and Infectious Diseases Vaccine Research Center. This research was supported by the John Sealy Memorial Endowment Fund and the James W. McLaughlin Endowment.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>