Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Early Reptiles Moved

27.07.2011
University Jena and the Foundation Schloss Friedenstein Gotha Start a Joint Research Project

Modern scientists would have loved the sight of early reptiles running across the Bromacker near Tambach-Dietharz (Germany) 300 million years ago. Unfortunately this journey through time is impossible.

But due to Dr. Thomas Martens and his team from the Foundation Schloss Friedenstein Gotha numerous skeletons and footprints of early dinosaurs have been found and conserved there during the last forty years. “It is the most important find spot of primitive quadruped vertebrates from the Perm in Europe,“ says Professor Dr. Martin S. Fischer from the University Jena (Germany).

The evolutionary biologist and his team together with the Gotha scientists and other partners are now starting a research project not only to analyze the locomotion of these primeval saurians. They also want to set them back into motion – at least in animation. The Volkswagen Foundation (VolkswagenStiftung) will support the project with about 288.000 Euro during the next two years. “Our first major palaeontologic project“, as zoologist Fischer delightedly calls it.

The fossils found on the Bromacker date back to the oldest fully terrestrial vertebrates. These so-called amniotes are the first real “land-dwelling animals”. This became possible through a first evolutionary step in which they laid a completely encapsulated egg in whose ‘watery inside’ the offspring could develop. Therefore tadpoles and gills became redundant. “The Bromacker fossils are the closest relatives of the last mutual ancestor of the amniotes that have been found so far,“ Dr. John A. Nyakatura, who oversees the new research project points out, stressing the evolutionary-biological importance of the finds. How did the locomotion system of those amniotes change? They are according to Nyakatura “pivotal to the genealogical tree for evolutionary biologists”. The Jena expert in locomotion research says the crucial questions of the new project are: “Which functionally anatomical consequences does ‚cutting the cord‘ to water have for the locomotion system of the animals?”

The Jena zoologists and their partners in Gotha, Dresden (both Germany), England and the USA wanted to find out. In their research they cannot only rely on years of expertise but also on one of the fastest X-ray video systems worldwide, which is used at the Friedrich Schiller University. With the help of this system, Dr. Nyakatura and the Paleo-Biomechanist Dr. Vivian Allen who will change from London to Jena in autumn, plan to analyze the locomotion systems of diverse animals resembling the early reptiles. They will observe skinks, tiger salamanders, green iguanas and small crocodiles. In order to do so the animals will move on a treadmill in front of the X-ray video camera that can take up to 2.000 pictures per seconds. Moreover the pressure on the joints will be investigated and footprints will be generated on wet clay. At the end of these analysis a comprehensive locomotion profile of the species is to be created – which in itself will bring science forward.

The protocol of the footprints will then be compared to the primeval footprints, in order to get an understanding of the early saurians movements. “And this in turn will allow conclusions to be drawn about the find spot and what happened there,” Dr. Martens adds. This is only possible because the Gotha researchers could not only recover numerous footprints but also complete skeletons of unique quality. “The fossils are mind-blowing,“ Nyakatura stresses. The entire animal relics encapsulated in stone slabs are being scanned with the help of the TU Dresden in order to create three-dimensional reconstructions of the skeletons. At the end of the project animated studies of the early saurians will be generated from the scans and the locomotion protocols. ”Thanks to the support of the VolkswagenStiftung and the co-operation with the University Jena we will finally be able to give an insight into the world of the early saurians to the visitors of the ‘Museum of Nature’ in Schloss Friedenstein,” says Dr. Martin Eberle, director of the Foundation Schloss Friedenstein Gotha. Now the researchers are hoping their project will be successful so that they cannot only mount an exhibition on the subject in two years’ time. They will also be able to travel 300 million years back in time due to the innovative animations – and they will watch the early reptiles running.

Contact:
Dr. John Nyakatura
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstraße 1
D-07743 Jena
Phone: 0049 (0)3641 / 949183
Email: john.nyakatura[at]uni-jena.de
Dr. Martin Eberle
Stiftung Schloss Friedenstein Gotha
Schloss Friedenstein
D-99867 Gotha
Phone: 0049 (0)3621 / 823411
Email: sekretariat[at]stiftung-friedenstein.de

Axel Burchardt | idw
Further information:
http://www.uni-jena.de/en/start_en.html

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>