Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Early Reptiles Moved

27.07.2011
University Jena and the Foundation Schloss Friedenstein Gotha Start a Joint Research Project

Modern scientists would have loved the sight of early reptiles running across the Bromacker near Tambach-Dietharz (Germany) 300 million years ago. Unfortunately this journey through time is impossible.

But due to Dr. Thomas Martens and his team from the Foundation Schloss Friedenstein Gotha numerous skeletons and footprints of early dinosaurs have been found and conserved there during the last forty years. “It is the most important find spot of primitive quadruped vertebrates from the Perm in Europe,“ says Professor Dr. Martin S. Fischer from the University Jena (Germany).

The evolutionary biologist and his team together with the Gotha scientists and other partners are now starting a research project not only to analyze the locomotion of these primeval saurians. They also want to set them back into motion – at least in animation. The Volkswagen Foundation (VolkswagenStiftung) will support the project with about 288.000 Euro during the next two years. “Our first major palaeontologic project“, as zoologist Fischer delightedly calls it.

The fossils found on the Bromacker date back to the oldest fully terrestrial vertebrates. These so-called amniotes are the first real “land-dwelling animals”. This became possible through a first evolutionary step in which they laid a completely encapsulated egg in whose ‘watery inside’ the offspring could develop. Therefore tadpoles and gills became redundant. “The Bromacker fossils are the closest relatives of the last mutual ancestor of the amniotes that have been found so far,“ Dr. John A. Nyakatura, who oversees the new research project points out, stressing the evolutionary-biological importance of the finds. How did the locomotion system of those amniotes change? They are according to Nyakatura “pivotal to the genealogical tree for evolutionary biologists”. The Jena expert in locomotion research says the crucial questions of the new project are: “Which functionally anatomical consequences does ‚cutting the cord‘ to water have for the locomotion system of the animals?”

The Jena zoologists and their partners in Gotha, Dresden (both Germany), England and the USA wanted to find out. In their research they cannot only rely on years of expertise but also on one of the fastest X-ray video systems worldwide, which is used at the Friedrich Schiller University. With the help of this system, Dr. Nyakatura and the Paleo-Biomechanist Dr. Vivian Allen who will change from London to Jena in autumn, plan to analyze the locomotion systems of diverse animals resembling the early reptiles. They will observe skinks, tiger salamanders, green iguanas and small crocodiles. In order to do so the animals will move on a treadmill in front of the X-ray video camera that can take up to 2.000 pictures per seconds. Moreover the pressure on the joints will be investigated and footprints will be generated on wet clay. At the end of these analysis a comprehensive locomotion profile of the species is to be created – which in itself will bring science forward.

The protocol of the footprints will then be compared to the primeval footprints, in order to get an understanding of the early saurians movements. “And this in turn will allow conclusions to be drawn about the find spot and what happened there,” Dr. Martens adds. This is only possible because the Gotha researchers could not only recover numerous footprints but also complete skeletons of unique quality. “The fossils are mind-blowing,“ Nyakatura stresses. The entire animal relics encapsulated in stone slabs are being scanned with the help of the TU Dresden in order to create three-dimensional reconstructions of the skeletons. At the end of the project animated studies of the early saurians will be generated from the scans and the locomotion protocols. ”Thanks to the support of the VolkswagenStiftung and the co-operation with the University Jena we will finally be able to give an insight into the world of the early saurians to the visitors of the ‘Museum of Nature’ in Schloss Friedenstein,” says Dr. Martin Eberle, director of the Foundation Schloss Friedenstein Gotha. Now the researchers are hoping their project will be successful so that they cannot only mount an exhibition on the subject in two years’ time. They will also be able to travel 300 million years back in time due to the innovative animations – and they will watch the early reptiles running.

Contact:
Dr. John Nyakatura
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstraße 1
D-07743 Jena
Phone: 0049 (0)3641 / 949183
Email: john.nyakatura[at]uni-jena.de
Dr. Martin Eberle
Stiftung Schloss Friedenstein Gotha
Schloss Friedenstein
D-99867 Gotha
Phone: 0049 (0)3621 / 823411
Email: sekretariat[at]stiftung-friedenstein.de

Axel Burchardt | idw
Further information:
http://www.uni-jena.de/en/start_en.html

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>