Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dysfunction in cerebellar Calcium channel causes motor disorders and epilepsy

One ion channel, many diseases
RUB researchers report in the “Journal of Neuroscience”

A dysfunction of a certain Calcium channel, the so called P/Q-type channel, in neurons of the cerebellum is sufficient to cause different motor diseases as well as a special type of epilepsy. This is reported by the research team of Dr. Melanie Mark and Prof. Dr. Stefan Herlitze from the Ruhr-Universität Bochum.

They investigated mice that lacked the ion channel of the P/Q-type in the modulatory input neurons of the cerebellum. “We expect that our results will contribute to the development of treatments for in particular children and young adults suffering from absence epilepsy”, Melanie Mark says. The research team from the Department of General Zoology and Neurobiology reports in the “Journal of Neuroscience”.

P/Q-type channel defects cause a range of diseases

“One of the main challenging questions in neurobiology related to brain disease is in which neuronal circuit or cell-type the diseases originate,” Melanie Mark says. The Bochum researchers aimed at answering this question for certain motor disorders that are caused by cerebellar dysfunction. More specifically, they investigated potential causes of motor incoordination, also known as ataxia, and motor seizures, i.e., dyskinesia. In a previous study in 2011, the researchers showed that a certain Calcium channel type, called P/Q-type channel, in cerebellar neurons can be the origin of the diseases. The channel is expressed throughout the brain, and mutations in this channel cause migraines, different forms of epilepsy, dyskinesia, and ataxia in humans.

Disturbing cerebellar output is sufficient to cause different diseases

“Surprisingly, we found in 2011 that the loss of P/Q-type channels, specifically in the sole output pathway of the cerebellar cortex, the Purkinje cells, not only leads to ataxia and dyskinesia, but also to a disease often occurring in children and young adults, absence epilepsy,” Dr. Mark says. The research team thus hypothesized that disturbing the output signals of the cerebellum is sufficient to cause the major disease phenotypes associated with the P/Q-type channel. In other words, P/Q-type channel mutations in the cerebellum alone can elicit a range of diseases, even when the same channels in other brain regions are intact.

Disturbing the input to the cerebellum has similar effects as disturbing the output

Mark’s team has now found further evidence for this hypothesis. In the present study, the biologists did not disturb the output signals, i.e., the Purkinje cells, directly, but rather the input to these cells. The Purkinje cells are modulated by signals from other neurons, amongst others from the granule cells. “This modulatory input to the Purkinje cells is important for the proper communication between neurons in the cerebellum,” Melanie Mark explains. In mice, the researchers disturbed the input signals by genetically altering the granule cells so that they did not express the P/Q-type channel. Like disturbing the cerebellar output in the 2011 study, this manipulation resulted in ataxia, dyskinesia, and absence epilepsy. “The results provide additional evidence that the cerebellum is involved in initiating and/or propagating neurological deficits”, Mark sums up. “They also provide an animal model for identifying the specific pathways and molecules in the cerebellum responsible for causing these human diseases.”

Bibliographic record

T. Maejima, P. Wollenweber,L.U.C. Teusner, J.L. Noebels, S. Herlitze, M.D. Mark (2013): Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to Purkinje Cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice, The Journal of Neuroscience, doi: 10.1523/JNEUROSCI.5442-12.2013

Further information

Dr. Melanie Mark, Department of General Zoology and Neurobiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-27913, E-Mail:

Prof. Dr. Stefan Herlitze, Department of General Zoology and Neurobiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24363, E-Mail:

Editorial journalist: Dr. Julia Weiler

Dr. Josef König | idw
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>