Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug used to treat skin conditions is a marine pollutant

24.03.2009
Clotrimazole is a common ingredient in over-the-counter skin creams. Recent results from the University of Gothenburg, Sweden, now show that it is associated with major environmental risks.

"The pharmaceuticals and chemicals in everyday use form a mixture in the ocean that has a direct impact on the growth and reproduction of organisms", says scientist Tobias Porsbring.

When Euorpean authorities assess environmental risks, they often do so for one chemical at a time. Recent research, however, shows that the hazardous chemicals that humans spread in the environment do not work alone. Chemicals, drugs and personal-care products that accompany wastewater often end up in the oceans, where they form a "cocktail" of chemicals. This "cocktail-effect" may be more harmful than the individual chemicals alone.

Environmental risks

Scientist Tobias Porsbring at the Department of Plant and Environmental Sciences at the University of Gothenburg has studied natural communities of microalgae along the Swedish west coast. He presents results in his doctoral thesis that show how the use of a common agent against skin fungi, clotrimazole, is associated with major environmental risks.

"The levels of clotrimazole that are measured in the environment affect the synthesis of sterols in the algae, and these are important in several functions in the algal cells. The growth and reproduction of the algae are disturbed. Single-cell microalgae are the fundamental basis of the ocean food chain, and the use of clotrimazole thus may affect the complete ocean ecosystem", says Tobias Porsbring.

"Cocktail effect" on microalgae

Clotrimazole, however, does not act alone in the ocean ecosystem. Many other substances are often found in the oceans, including propranolol (a drug to lower blood pressure), triclosan (an anti-bacterial agent commonly found in soap and deodorants), fluoxetine (an anti-depressant pharmaceutical) and zinc pyrithione (found in anti-dandruff shampoos). The results that Tobias Porsbring presents show that a mixture of such compounds forms a "cocktail effect" that has a direct impact on the growth of the microalgal community.

Theoretical model

The fact that low levels of a pollutant that are insufficient to cause a detectable effect may contribute to a larger, combined effect with other chemicals emphasises that cocktail effects are a real environmental problem. Despite this, assessments of environmental risk are usually carried out on one chemical at a time. Through knowledge of environmental levels and the impact of individual chemicals Tobias Porsbring's thesis launch a theoretical model for calculating how cocktail effects arise. This model can be used to obtain highly reliable estimates of the composite environmental risk from mixtures of chemicals in the ocean ecosystem.

The thesis "On Toxicant-Induced Succession in Periphyton Communities: Effects of Single Chemicals and Chemical Mixtures" was defended at a disputation on 20 March. Tobias Porsbring's supervisor was Professor Hans Blanck.

This doctoral thesis was produced as a collection of papers:
Paper I. Porsbring T, Arrhenius Å, Backhaus T, Kuylenstierna M, Scholze M, Blanck H (2007) The SWIFT periphyton test for high-capacity assessments of toxicant effects on microalgal community development. Journal of Experimental Marine Biology and Ecology 349:299-312
Paper II. Porsbring T, Blanck H, Tjellström H, Backhaus T (2009) Toxicity of the
pharmaceutical clotrimazole to marine microalgal communities. Aquatic Toxicology 91:203-211
Paper III. Porsbring T, Backhaus T, Johansson P, Kuylenstierna M, Blanck H. Mixture toxicity from PSII inhibitors on microalgal community succession is predictable by Concentration Addition. Manuscript
Paper IV. Backhaus T, Porsbring T, Arrhenius Å, Blanck H. Single substance and mixture toxicity of 5 pharmaceuticals and personal care products to marine periphyton communities.

Manuscript

Contact
Tobias Porsbring, Department of Plant and Environmental Sciences, University of Gothenburg
Mobile: 46 704 395676
Work tel: 46 31 786 2626
Home tel: 46 31 707 4507
tobias.porsbring@dpes.gu.se
Press information: Krister Svahn
krister.svahn@science.gu.se
46 (0)31 786 49 12

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/19289
http://www.gu.se/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>